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ANALYTICAL AND EXPERIMENTAL PERFORMANCE OF OPTIMAL
CONTROLLER DESIGNS FOR A SUPERSONIC INLET
by John R. Zeller, Bruce Lehtinen, Lucille C. Geyser, and Peter G. Batterton

Lewis Research Center

SUMMARY

This report applies the techniques of modern optimal control theory to the design of
a control system for a supersonic inlet. The inlet control problem was approached as a
linear stochastic optimal control problem using as the performance index the expected
frequency of unstarts. The details of the formulation of the stochastic inlet control
problem are presented. The computational procedures required to obtain optimal con-
troller designs are discussed, and the analytically predicted performance of controllers
designed for several different inlet conditions is tabulated. The experimental implemen-
tation of the optimal controllers is described, and the experimental results obtained in
the Lewis 10- by 10-Foot Supersonic Wind Tunnel (SWT) are presented.

The design studies showed that the amplitude-frequency distribution of the distur-
bance seen by the inlet has a large effect on the performance capabilities of the optimal
controller. In this study two distinct disturbance spectra were assumed. The results
show that the more disturbance energy there is at high frequency, the more difficult it
is to control the inlet.

The experimental program pointed out certain of the problems involved in imple-
menting a complex modern optimal controller. Controllers were implemented and eval-
uated with both analog and digital computer components. Analytically predicted and ex-
perimental frequency response performance compared quite well. The analog and
digital computer implementations of a particular optimal controller design showed com-
parable performance results. Computer routines which were used to implement the
digital computer version of an optimal controller are included. Recommendations as to
further activities in using the capabilities of linear stochastic optimal control theory are
also included.



INTRODUCTION \

The techniques of modern optimal control theory have been applied to the design of
a control system for a supersonic inlet. A supersonic inlet is that portion of a super-
sonic propulsion system which decelerates air from supersonic velocity (relative to the
aircraft) ahead of the aircraft to subsonic velocity at the entrance to the compressor.
This deceleration is needed because present compressors require subsonic air to oper-
ate efficiently. The dynamic head of supersonic air at high Mach numbers may com-
prise a large percentage of the overall propulsion system compression, and, therefore,
efficient recovery of the pressure head is a critical part of the supersonic propulsion
system. For subsonic propulsion systems, however, almost all the compression is
done by the engine's compressor. To aid the supersonic inlet in operating at peak effi-
ciency in the face of varying flight conditions, variable geometry features and associated
controls are required. :

A typical axisymmetric mixed compression inlet is shown in figure 1 in a normal
operating configuration. Air at supersonic velocity enters the inlet past a weak oblique
shock wave. It is compressed supersonically past a minimum area point, or throat, up
to the terminal normal shock. Thereafter, the flow is subsonic up to the compressor
face station.

Oblique shock -, - ~Translating ¢ Bypass door

- > / centerbody /G
_— Turbojet
_ engine
X AY
—_— 7 H SEZZ T T, m\ 4
N ! \ . \\
NN “Lz"rm'iﬂﬂh “-Compressor
Inlet throat~ % mal shock face station
- Shock position

tolerance, a

Figure 1. - Schematic of axisymmetric mixed compression supersonic inlet,

A stable operating condition for the inlet is one in which the throat Mach number is
greater than one and the normal shock is downstream of the throat. This is the so-called
started condition. An upstream or downstream disturbance may, however, cause the
throat Mach number to drop to one, or it may cause the normal shock to move ahead of
the throat. When either of these occur, the inlet unstarts and enters an undesirable,
unstable operating region (called unstart).

During an unstart a shock wave sweeps out of the throat and a strong shock wave
forms ahead of the inlet. The result is a large increase in drag and a large decrease in
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the pressure recovered at the compressor face. In addition, there may exist an oscilla-
tory flow pattern within the inlet. Such a condition of unstart occurring in flight may not
only interact with the engine, producing compressor stall and/or combustor flameout,
but the increased nacelle drag and thrust loss can cause a sudden yawing of the aircraft.
Control is required to maintain throat Mach number and terminal shock position within
acceptable limits while maintaining efficient inlet operation.

Basic control devices are bypass doors and a variable centerbody. Opening the
bypass doors allows air to be dumped overboard, causing the shock to move downstream
away from the throat region. The movable centerbody varies the throat area, thereby
varying the throat Mach number. A proper combination of these two control variables
is used to ensure stable (started) inlet operation in the face of upstream and downstream
disturbances.

Inlet control systems (refs. 1 and 2) have been designed to minimize system re-
sponse to deterministic disturbances. Designs were obtained using frequency domain
techniques. In reference 3, Barry conducted a design study based on an explicit de-
scription of inlet disturbances. The disturbance treated was atmospheric turbulence
described by experimentally determined power spectral densities and probability dis-
tributions. The criterion used for evaluating inlet controls was the expected frequency
of inlet unstart.

The control system to be discussed in this report has been designed to minimize
the unstarts that would be initiated by a downstream (engine compressor face) airflow
disturbance. This approach is an extension of the work of Barry. Initial work in this
area has been presented in references 4 and 5. The inlet control problem was ap-
proached as a linear stochastic optimal control problem using, as the performance
index, the expected frequency of unstarts. References 4 and 5 document the theoretical
basis and computational procedures required in designing and analytically evaluating
modern optimal inlet controllers.

The techniqlies of modern optimal control theory as applied to inlet control design
are being investigated for several reasons. First, the modern approach provides a
rigorous solution technique for optimizing a control design to some specific performance
criterion. Second, the resulting control design will be stable. Stability is not neces-
sarily assured when using conventional techniques. Third, the approach is general
enough that system constraints can be included in the performance criterion. For ex-
ample, in the inlet problem, limitations on bypass door position, velocity, and acceler-
ation can be taken into account by a proper formulation of the criterion. Fourth, noisy
measurements as well as random disturbances fit quite well into the modern optimal
control formulation. Finally, the theory is such that it can handle the multiple-input -
multiple-output control problem. The inlet control design, although it is not so con-
sidered in this report, can be expanded to a multiple input-output problem. Such an



approach could sense additional pressures and pressure ratios throughout the inlet duct
and control with centerbody as well as bypass doors.

The analytical inlet model used for the controls analysis of reference 4 was a sim-
plified representation of an actual experimental variable geometry mixed compression
supersonic inlet under evaluation at Lewis Research Center (refs. 6 to 8). Controller
performance was evaluated analytically for wide spectrum (white) stochastic disturb-
ances at two different levels of measurement noise on the sensed oufput variable. This
report, however, expands the inlet model to include additional aspects such as (1) the
response limitations of the actuators for the control input (overboard bypass doors) and
(2) downstream airflow disturbances which have nonwhite (colored) power spectral den-
sities. These considerations are required when the controller designs are to be im-
plemented and evaluated experimentally on an inlet operating in a supersonic environ-
ment.

The rigorous solution techniques of modern optimal control design generate a con-
troller configuration which in most cases is considerably more complex than one ob-
tained by classical cut-and-try frequency domain techniques. It is the purpose of this
report to discuss the procedures involved in determining the optimal design and then im-
plementing with hardware the complex modern controller configuration. In addition, in
determining the linear state-space inlet representation, several approximations to the
real nonlinear distributed parameter inlet model have to be made. This report, there-
fore, uses results from the experimental operation of the controllers to determine the
adequacy of these approximations.

The information is presented in two parts. First, the details of the formulation of
the stochastic inlet control problem are discussed and documented. Along with this is a
description of the computational procedures required to arrive at the optimal controller
designs. Finally, a tabulation of the analytical results of controllers for several differ-
ent inlet conditions is presented. In the second part, the details of the hardware imple-
mentations of controllers are described. This is followed by a presentation of the ex-
perimental results obtained in the Lewis 10- by 10- Foot Supersonic Wind Tunnel (SWT),
as well as a comparison of these results with the frequency responses as predicted ana-
lytically. Finally, some recommendations are presented as to further efforts that would
enhance this initial endeavor at applying optimal controller design to supersonic inlets.

CONTROLLER DESIGN AND ANALYTICAL PERFORMANCE
General Solution Technique

As stated earlier, the design techniques of modern optimal control theory have been
applied to the design of a control system for a supersonic inlet. The purpose of the inlet
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control system considered here is to minimize the expected frequency of inlet unstarts to
a random downstream airflow disturbance. Figure 2 is a block diagram of the general
configuration chosen for this study.

As shown in figure 2, there are three distinct transfer functions, two defining the
inlet and one the downstream (compressor face) disturbance. They are (1) the dynamics
of the subsonic duct designated as GINLET(S)’ (2) the dynamics of the bypass doors to
be used for control designated as GBPD(S), and (3) the transfer function GNS(S) (noise
shaping network) which models the dynamics of the airflow disturbance to the duct.

Each of these is discussed in detail in later sections of this report.

Noise shaping
White noise, T~~~ ~77 1
W ——— GNS(S)
|

Nonwhite compressor Measurement
L e - face disturbance flow, wy noise (white}, vy
Bypass door Bypass doors S
control input, W, w
u———p——> GBPD(S} o ! G]NLET(S) n
A K Measurement
\ A\ 4
\ inlet duct hY
Control> \\_
bypass Shock position
flow

Figure 2, - Block diagram of typical inlet configuration,

The Gaussian compressor face disturbance Wys shown in figure 2, is modeled as a
white Gaussian airflow disturbance w being operated on by the transfer function GNS(S).
The control input u operates the bypass doors and results in a corrective control air-
flow W A measurement z of terminal normal shock position Vg is measured

through a noisy channel with measurement noise vy . The measurement noise is
s

assumed to be white Gaussian.
For the inlet control design the following performance index was chosen to be mini-
mized:
J = x + ko2 (1)
u
where

—= exp(—& 2)




A expected frequency of inlet unstarts
k positive weighting factor
0121 mean-square value of control input

mean-square value of shock velocity
mean square value of shock position

o shock position tolerance (distance between undisturbed shock position and inlet
throat, see fig. 1)

The cost J was selected so that the control must minimize unstarts A while limiting
the amount of bypass door control effort 0121 needed to do so. (All symbols are defined
in appendix A.) ‘

The A relation (eq. (2)) gives the expected frequency with which the Gaussian ran-
dom variable Vg exceeds the level « in the positive direction. The derivation of
equation (2) can be found for instance in reference 9. The weighting factor k for 0121
is selected to penalize the control variable so that the level of control effort will not
exceed that which is available. (Selection of the control effort weighting factor k is
discussed in a later section.) In order touse A of equation (2) for this control design,
the following assumptions must be made: (1) the inlet disturbances are Gaussian, (2) the
inlet dynamics are linear, and (3) the controller is restricted to being linear and time
invariant.

The approach taken in the designs being presented in this report uses the techniques
of linear stochastic optimal control and estimation theory. This solution involves min-
imizing a quadratic type of performance index. It should be noted that the performance
index of equation (1) is not quadratic because of A, A linear optimal control law can,
however, be determined by employing a technique termed the quadratic equivalence prin-
ciple (ref. 10). This technique is used in this report. Since it has been previously de-
scribed and used in reference 5, it is not repeated here. A summary of the type of
control system which results is presented in the following section.

Linear Stochastic Optimal Control and Estimation Solution
A linear time invariant system can be described in state variable form as

X = Ax + Bu + Dw (3)



where x is an n X 1 state vector, u isa ¢ X 1 control vector, and w isa d X 1 plant
disturbance vector. An [ X 1 output vector y is defined as

y =Cx (4)
and an m X 1 measurement vector is defined as
z=HX+vV (5)

where v is an m X 1 measurement noise vector. Both w and v are white zero mean
Gaussian and uncorrelated with each other. Quantities A, B, C, D, and H are matri-
ces of appropriate dimensions.

In solving the control and estimation problem (using the approach of ref. 11) for a
quadratic performance index, the following equations result. The feedback control law
is defined as

u=-K.zX (6)
where X is the optimal estimate of the state vector x and is generated with a Kalman
filter described by

% = A% + Bu + K (z - HR) (7)

The computation details for the constant matrices Kc and Ke are given in reference 4.

The block diagram in figure 3 illustrates the solution to the optimal control and es-
timation problem showing the state estimator and state estimator feedback. The state
estimator (Kalman filter, eq. (7)) is basically a model of the plant driven by control u
and measurement z. Signal z is compared with the estimated measurement Z to
form a term which is the error in the estimate of the measurement. This error is then
multiplied by Kalman filter gains Ke and added back into the filter as a ''correction''
term. The filter output X is weighted by the control gains Kc to form the optimal
control vector u. The portion of the system with measurement z as the input and con-
trol u as the output is defined as the optimal controller.

The following sections discuss the details of the design procedure as applied to the
inlet problem.
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Linear Continuous Time-Invariant Model Formulation

Inlet transfer functions. - The experimental mixed compression inlet, for which an
optimal controller has been designed, has been the subject of evaluation in several past
programs at Lewis Research Center. During these programs, the dynamic relations
between a downstream (compressor face) disturbance and specific measurable variables
throughout the inlet have been determined. These relations have been obtained through
a frequency response testing method (refs. 6 and 8). In appendix B is a brief descrip-
tion of the method and how it was used in evaluating the inlet open loop frequency re-

sponse performance. Appendix C contains the frequency response data obtained to de-
scribe the performance of the inlet. Also in appendix C is a complete tabulation of the
transfer functions which have been curve fit to the experimental data. These transfer
-T45
d This is to be
expected considering the distributed nature of the inlet duct. For comparison purposes,

functions involve transportation lags or pure dead-time terms (e

appendix C contains the frequency responses of the transfer function approximations to
the experimental data.

For the inlet controls program being documented in this report, two specific meas-
urements of shock location have been considered. One configuration uses a sensor
which provides a stepwise continuous indication of actual inlet shock position. This
type of sensing of the normal shock position has been accomplished in previous research



programs (refs. 12 and 13). A brief description of the technique is also included in
appendix B. The control using this measurement of actual shock position is designated
as the shock position feedback or SPF system. It is described by the block diagram in
figure 4. The second shock measurement configuration uses a static pressure down-
stream of the throat to indicate the position of the inlet normal shock. This is a more
conventional way of obtaining an indication of shock position. For this second configura-
tion, it was assumed that only the throat exit static pressure Pio Was measurable for
purposes of control., Thus, the inlet is uncontrolled or open loop to the actual shock
position location. This configuration, which is shown in the block diagram in figure 5,
shall be designated as the throat exit feedback or TEF system.

Noise shaping

o

w
—bi GNS(S) |

[BUS |
Bypass doors

Vy'5

+

u Y z
GBPD(S) - GINLET(S) \ " {(J
\
\
\_Shock
position
Optimal
controller

Figure 4, - Block diagram of shock position feedback (SPF) system of
iniet control.

Noise shaping
o~

Bypass doors

p
u GB PD(S) GDUCT(S) T te GSHOCK(S) Ys
\\ Shock position
\
Throat exit- .
pressure +
O———
Pte
Optimal 4
controller

Figure 5. - Block diagram of throat exit feedback (TEF) system of inlet control.



For the SPF system (fig. 4), the transfer function relation of shock position Vg in
response to a downstream (compressor face) airflow disturbance is given as

-3
16.25 <_§_ + 1>e'4f°><10 s

) w, (s) ) 2 kg/sec
i (_§_+ 1)( s” . 2(0.3)s N 1> g
80 3652 365

Since our intent is to develop a finite-order state variable formulation of the inlet, the
dead-time term of equation (C1), which has an infinite number of poles, must be modi-
fied. A finite-order approximation for the dead time was obtained using 2 Pade approx-
imation. The transfer function for the SPF system inlet model can be written as

v5(8)

Wy (s)

SwLET®) =

16. 25 (ES_ + 1)(1 - 2107 3s + 1.6x1075s2 - 0.533x1079s%)
10

2
(-S-. + 1)( s” ,0.6s 1>(1 + 2x1073s + 1.6x10" %52 + 0.533x107%s3)

80 3652 365
cm (8)
kg/sec
using a third-order Pade.
For the TEF system (fig. 5), the two transfer functions are
1.5x1073

1.52<_S—+ 1)(_§—+1>e' ' s 5
o e o Pte® " \210 /s00 N/cm €2)

pueTT w;(s) ) s s2  0.6s kg/sec

(—— + 1) +—+1
80 3652 365
G (s) = = (C3)
SHOCK (s) s 9
Pte (——- + 1) N/cm
500
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Again, as in the case of the SPF system, Pade approximations to the delay terms
are used. Since the delay terms in equations (C2) and (C3) are both of shorter duration
than the total duct delay of equation (C1), it was determined that first-order Padé ap-
proximations provided sufficient accuracy. The resulting transfer functions are

1.52(-5_+1 (_S_+ 1)(1 - 7.5x10" %s)
Cpycr®) Pel®) (210 )500 N/cm? ©)
puctT'®) = =
w.(s) 2 kg/sec
i (E_ + 1> S +9:65 1)1+ 7.5x107%)
80 sg52 365
Y58 10.68(1 - 1.25x10"3s) em
Sshock®) = - > (10)
pte(s) (_s_ + 1)(1 + 1. 25><10'3s) N/cm
500

Bypass door transfer function. - The mechanism used as the control input for the
mixed-compression inlet under investigation are overboard bypass doors. These are
fast-acting high-performance devices and are discussed in reference 14. Frequency
response data from reference 14 are displayed in figure 6. As can be seen, the dynam-
ics are not linear in that the performance varies as a function of the disturbance ampli-
tude. Previous tests, however, have shown that a disturbance equivalent to the 14~
percent level of door movement moves the shock position over a range quite adequate for

Disturbance amplitude,
— cm

0,254 O ) 0Onaon 0

B O O OOOBOCB%&

— [e]
- . 046 (14 percent of full stroke)
A A A AAA

.
f—

Amplitude of motion (0 to peak), cm

ol el o L
10 100 1000

Frequency, Hz

Figure 6. - Frequency response of inlet control bypass doors for three disturbance
amplitudes,
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investigation of inlet controller concepts. At this level of bypass airflow, the transfer
function of equation (11) adequately describes the bypass door performance:

w,(s)
G (S) = c = 0. 9435 l{w (11)
BFD u(s) 82 2(0.5)s v
+ - +1
6282 628

Disturbance noise assumptions. - It has been pointed out earlier in this report that
the inlet controllers were designed to minimize the expected frequency of unstarts to
downstream disturbances. This is a statistical performance criteria and involves the
mean-square value of shock position and shock velocity (ref. 4). Thus, a statistical
description of the downstream disturbances is required. The linear stochastic optimal
control theory formulation demands that the disturbance w be white Gaussian noise with
zero mean. For the inlet problem, the disturbance Wy was not white. To model the
spectrum of Wys transfer functions were selected to shape a white noise input w. The
presence of the required shaping transfer functions is shown by the dotted blocks in fig-
ures 4 and 5.

At the time of this program, no data were available to define the specific shape of
the w, spectrum. Therefore, two different disturbance spectra were assumed. Their
asymptotic representations are shown in figure 7. The spectra were selected to allow

100 —
/,'-(0. 554) Case

1071

1073

1074

Disturbance power, PSD(wg), (kg/sec)%/(rad/sec)

1070

\
1076 | | | [ | \ | |
.01 .1 10 10 102 103 104 10°
Frequency, rad/sec

Figure 7. - Power spectral density of disturbance W, (asymptotic representa-
tion).
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the comparison of resulting optimal controller designs over as wide a range as seemed
reasonable. To model the spectra shown in figure 7 as well as to allow for some flexi-
bility in modeling other spectra in the future, the following generalized transfer function

was used:
241
wd(s) . )

w(s) SZ (al + a3)
+ s +

Gyg(®) = (12)

1

@103 ¥103

For the spectra of cases A and B in figure 7, the o parameter values are shown in
table I. To serve as a basis of comparison, it was decided that the mean-square value
of the disturbance airflow would be the same regardless of the frequency spectrum
selected. This was accomplished by modifying the power spectral density level of the
white noise input w in accordance with the particular frequency spectrum selected. For
the case A and case B spectra, the white noise input power spectral densities PSD(w)

required to provide a constant mean-square airflow ogﬂ equal to 0.0282 (kilogram
d

per second)2 are included in table I.

TABLE I. - FREQUENCY SPECTRUM PARAMETERS

FOR DISTURBANCE AIRFLOWS

Parameters Case

A B

Noise shaping transfer function
parameters, rad/sec:

ay 0.1 0.1
oy 5000 10
ag 5000 2000

White noise input power spectral 0.554 | 0.188
density, PSD(w), (kg/sec)z/
(rad/sec)

Mean-square value of disturbance |0.0282 | 0. 0282
airflow, o@d, (kg/sec)2

13



Measurement noise descriptions. - The signals of actual shock position Vs and
throat exit static pressure Py are used as the output measurements for the SPF and
TEF systems, respectively. It has been assumed that these measurements are cor-
rupted by specific levels of additive white Gaussian zero mean noise. This assumption
is made at this time, since no spectral information of these measurement signals is
available. In addition, as is discussed briefly in appendix B and in detail in refer-
ence 12, the shock position sensor generates a stepwise continuous representation of the
location of the normal shock. No attempt has been made to include the quantization
error of the sensor in the analysis. The noise levels assumed for this design study are

P
SD (VYS

2
PSD(V ) - 2.38 (N/cm2> / rad/sec
pte

) - 3.22x10" % em? /rad/sec

State Space Model Formulation

The transfer functions representing the inlet dynamics for the two configurations
can now be formulated. The inlet frequency domain representations were transformed
to the state variable form (egs. (3) to (5)) by using the phase variable transformation
(ref. 15). Tables II and III are the resulting numerical values for the matrices and
and vectors for the SPF and TEF systems, respectively. The blocked-in sections come
directly from the transfer functions indicated on the right. The nonblocked-in elements
are the coupling between the transfer functions. The values of @y, Oy, and ag for the
case A and case B disturbance noise spectra are presented in table I.

It should be noted that both the SPF and TEF systems when put into the state space
formulation are described by ten first-order differential equations (eq. (3)). Thus, the
optimal inlet controller (eqs. (6) and (7)) consists of ten gains (Ke) defining a Kalman
filter which generates ten state estimates (X), which are weighted by ten feedback values
(Kc)'

With the state-space models of tables II and III the optimal controller design ap-
proach described earlier (documented in refs. 4 and 5) can now be undertaken. The
computational details of this procedure are described in the next section.
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Computational Design Procedures

It was desired that the optimal inlet controller be in the form of a combined
confroller-estimator as shown in figure 3. The design procedure is identical to that
described in detail in reference 4. Therefore, the steps required to determine the esti-
mator gains (Ke, eq. (7)) and optimal controller feedback gains (Kc’ eq. (6)) are only
summarized in this report. The estimator gains and the covariance matrix of the esti-
mation error can be determined by solving an appropriate steady-state matrix Riccati
equation using the inlet model and noise PSD's. To obtain the control gains K o 2 state
regulator problem must be solved. The regulator has the task of minimizing the devia-
tion of the appropriate states so as to accomplish the minimization of

J =X+ ko? (1)

when subjected to well defined compressor face airflow disturbances. As stated earlier,
J involves the expected frequency of unstarts A as well as the effort required to re-
duce the expected frequency of these unstarts. As was pointed out, A is not a quad-
ratic term. Thus, to use the results of linear stochastic optimal control theory and
obtain a linear feedback solution, the quadratic equivalence principle is used. This
rrinciple is briefly outlined here.

Consider a general quadratic index in the variables of equation (1):

2 2 2 2 2 2
£ = [a? W.
Jeq(oys’ orys, ou> (GYS + Wlorys + 20u> (13)
The differential of J eq is simply
2 oy 2

Similarly, the differential of J in equation (1) can be written as

2
23 2
o (2 "% o @/l
dJ = do? +—— 8402 +— Y 4o (14b)
02 \ 75 sz S ag/e0
e Vg Vg
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Now, assume a minimum of J e exists; thus,

q

Then, if

and

aJ/ao-2

Vs

it can be seen by comparing equations (14a) and (14b) that dJ = 0, which indicates J

has been minimized using the same gains Kc that minimized J eq"

Explicit conditions

that must be satisfied for J to be minimized can be obtained from the aforementioned
expressions for W, and W5 by substituting for the required partial derivatives:

\
2
O
y 2
Wl :-—Z—S- _qé_ -
%y \Uvg
> (15)
4rk o?
W, = 4rko_ 0: exp
2 g ¥g 9 2
g
yS
7

The computational technique for finding the minimum J is outlined in figure 8. There
will be 2 minimum J for each value of the control weighting k. The procedure shown

in figure 8 is repeated for each value of k.

To determine the minimum cost (J), trial pairs of W, and Wy (designated as W*
and Wg) are used as inputs to the optimal regulator portion of the solution. The feed-

1

back gains KC are determined by solving a steady-state matrix Riccati equation. Using
these gains and the covariance matrix of the estimation error, the steady-state state-
covariance matrix equation is solved to determine mean-square values of the states.

18
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Figure 8. - Computation procedure flow chart.

(This involves solving a Lgrapunov eguation. ) The mean-square state information is

used to determine 03 R oy , and % values. These are used to compute J and A as
s s

wellas W; and W,. When the values of W; and W, computed by equations (15) are
equal to the trial W’i‘ and W§ values, then equivalence is achieved and the cost J is
at 2 minimum value for that value of control weighting k.

A search routine on WI and W§ could have been used to find the minimum cost.
However, it was decided that selected pairs of W{ and W§ be used, which would en-
compass the field of possible values, and that both the optimum and nonoptimum solu-
tions would be printed. This list was then searched manually to find the optimum solu-
tions. The search was done to see the full deviations of the nonoptimum solutions from
the optimum.
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Analytical Design Results and Discussion

A family of optimal controllers has been designed for each of the four systems dis-
cussed earlier. These controllers are as follows:

(1) SPF system, case A disturbance

(2) TEF system, case A disturbance

(3) SPF system, case B disturbance

(4) TEF system, case B disturbance
Analytical results of the design procedure are presented and discussed in this section.

If the inlet were left open loop and the undisturbed steady-state position of the shock
(o) set by a fixed bypass door opening, then the unstart performance shown in figure 9
would result. Note that the ordinate is the inverse of the frequency of unstarts. The
mean time between unstarts A'l in hours should be a more understandable numerical
quantity for the reader.

Mean time between unstarts, )\'1, hr

10"2 L —

10 "4 o

1075 | I I | |
0 2 40 60 80 100
Square of shock position folerance, az, cm?

Figure 9. - Open loop (no control) unstart performance.
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Figure 9 is a log-linear plot of 7\'1 against az for both case A and case B distur-
bances. It should be remembered that o‘zv is the same for both cases. The straight

lines are due to log (A~ 1) being a linear function of «%. This can be seen by examining
the equation which defines A (eq. (2)). The « =0 intercepts for the lines are given by

(see eq. (2))
/ 2 2
2 UyS/O'i’s

This is the inverse of what is termed the ''zero crossing frequency.'' This intercept is

smaller for case B than for case A because of the relative magnitudes of 02 and 032,
-1 s s

The slope of a line is (203 > . This quantity is smaller for case A; thus, mean time

s

-1
between unstarts for case A is less sensitive to a than in case B. The reason (202 >
S

is smaller for case A is that in case A most of the energy is concentrated at low frequen-
cies where the disturbance energy is not greatly attenuated by the inlet duct. Converse-
ly, for case B, more disturbance energy is present at high frequencies where the inlet
attenuation is large; hence, the resulting mean-square shock position is less than for
case A.

Figures 10 to 13 represent the inlet unstart performance for each of the inlet prob-
lems being evaluated. \ On each of theseé figures the ordinate is the time between unstarts
A"l and covers the same range as that' of the shaded area of the open-loop performance
shown in figure 9.

The abscissa for these four figures is Oy the rms control effort in volts. This
factor was part of the performance index of equation (1). Each value of 0y corresponds
to a different value of control weighting k and thus a different set of feedback gains K c
In looking at the curves for any fixed value of shock setting «, the time between unstarts
increases as the amount of control effort o increases. Also, for a fixed control effort

u
‘but an increased a, A 1 is greater.

In figure 10 for SPF case A there is a sharp increase in a1 in the area of 0, =
0. 175 volt. Beyond 0. 20 volt, no significant gain in performance can be accomplished.
This type of control performance is also seen in figure 11 for TEF case A which is the
same disturbance case. When comparing figures 10 and 11 it can be seen that SPF sys-
tem can use lower « settings to accomplish the same unstart performance. Thus, for
the case A disturbance, control can better be accomplished by directly sensing the out-
put yg even though an additional measurement lag is incurred in doing so. This is due
to the relatively high measurement noise level present on the Pie measurement signal.

Also shown in figure 10 is a notation which indicates the shock setting that would be

required for an open-loop system to yield 100 hours between unstart. At this setting of
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15 centimeters, inlet overall performance (pressure recovery and distortion) would be
considerably worse than with the setting of 0.89 centimeter possible with closed-1loop
control.

Figure 12 and 13 are unstart performances for the two feedback configurations
(SPF and TEF) for the case B disturbance (high frequency content). The three «
settings are the same for each configuration. When comparing these two figures it can
be seen that there is a benefit from sensing the throat exit pressure Pie instead of
shock position Vg This signal is closer to the disturbance than shock position Vs
and, for the high-frequency (case B) disturbances, it shows unstart improvement. Even
though the p,, signal is highly corrupted by measurement noise, the data of figure 13
show that the closeness of Pie to the higher frequency disturbance yields performance
benefits. The need for less phase lag between disturbance and measurement seems to

outweigh the measurement uncertainty where higher frequency disturbances are con-
cerned.

Experimental Controller Selection

In the preceding sections the techniques for finding an optimal inlet controller for
a nonquadratic performance index were presented. These techniques were applied to
the design of optimal controllers for the 40/60 inlet, which were then evaluated in the
SWT. Selection of the feedback gains (KC) and estimator gains (Ke) for three of the l
four plant/noise configurations was made. The three configurations selected are

SPF system, case A disturbance (fig. 10)

TEF system, case A disturbance (fig. 11)

TEF system, case B disturbance (fig. 13)

For each of the three configurations one specific set of optimal controller gains
corresponding to a specific value of rms control effort o_. was selected. The values

u

of 9y at which the controller gains were selected are indicated in figures 10, 11, and

13. The actual selection was carried out in the following manner.
The physical variable used in selecting the control gains Kc was the control bypass
airflow w ¢ This variable has a well defined maximum value, determined by the maxi-

mum opening of the bypass doors. The airflow W, is related to the bypass door actu-

ator input u by the transfer function of equation (11). For each optimum controller,

the rms value of control airflow oy, Was computed. The controller gains selected for
c
experimental evaluation were those for which the resultant value of O Was equal to
c

0. 168 kilogram per second. This value is equal to 10 percent of the rms bypass door
flow capacity when operating about midposition.
It should be pointed out that the transfer function of equation (11) indicates the con-
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trol airflow W, is related to the input u as a function of frequency. Also, the inlet
disturbance energy has some frequency distribution which causes some type of frequency
distribution on the control signal u.

Therefore, even though the three experimental optimal controllers were selected

for the same value of rms control airflow Ow 2 the rms control efforts 0y required to
c
produce this fixed value of rms control airflow are different. This is indicated by the

different values of o appearing at the selection points in figures 10, 11, and 13. The
vertical lines on these figures can be used to determine the unstart performance for the
selected control designs.

The experimental results obtained using these selected controllers are presented

and discussed in the EXPERIMENTAL CONTROLLER PERFORMANCE section.

EXPERIMENTAL CONTROLLER PERFORMANCE
Analog (Continuous) Controller

The state estimator - optimal controller configuration discussed in the CONTROL-
LER DESIGN AND ANALYTICAL PERFORMANCE section and shown schematically in
figure 3 is described by the vector-matrix equations

% = A% + K, (z - HR) + Bu (16)
and

u= -ch{ (17)
These equations can be implemented directly by using analog computer components. Ap-
pendix B gives a brief description of the actual computer equipment employed in the ex-
perimental facility. As discussed earlier, three different optimal controller designs
were experimentally evaluated. These designs involved two different measured vari-
ables described earlier as the SPF and TEF systems. Figures 4 and 5 show the general
block diagrams for these two different configurations.

As can be seen from equations (16) and (17) and figure 3, the optimal controllers
lend themselves quite naturally to hardware implementation with an electronic analog
computer. The only difficulty involved in finalizing the analog hardware involved scaling
the large values of estimator gains and control gains resulting from the design procedure.
Most of the scaling problems were eliminated by using very fast integrating rates on
each of the integrators. In the analog circuit, the outputs of various integrators were
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the system estimated states X(t). In this particular problem, the presence of transfer
function zeros and the use of a Pade approximation for the dead time caused the state
variables to differ from any actual system variables. Thus, the level or magnitude of
state estimates during experimental system operation could not be easily predicted.

This made analog scaling to prevent amplifier overloads very difficult. To resolve this
problem, the experimental analog controllers were operated first with a linear analog
simulation of the inlet system transfer functions. Scaling the estimated states was then
adjusted to allow all the amplifiers to operate at satisfactory levels under the worse case
levels of disturbance inputs. The results of operating the three designs with the experi-
mental inlet in the wind tunnel (SWT) are presented in a later section.

Digital Computer (Discrete) Controller

Since a digital computer was already available in the SWT facility for a companion
experimental controls program (ref. 16), it was decided to implement optimal control
laws with a discrete controller. A brief description of the digital equipment is included
in appendix B and a detailed description is in reference 17.

Presently the optimal inlet control is formulated and designed as a continuous con-
troller. Equations (16) and (17) describing the optimal controller are linear, time-
invariant, differential, and algebraic equations. Two possible approaches for designing
optimal inlet controllers are available. One method involves transforming the inlet
open-loop differential equations into discrete-time (difference) equations. Then a com-
plete optimal control system can be designed in discrete time. Such an approach was
not used, since for the inlet it would have required a new formulation of the optimal con-
trol solution as well as the development of new computer routines.

The other method for obtaining a digital computer control law involves approximat-
ing the continuous control law of equations (16) and (17) by difference equations. The
performance of a system using a digital computer to implement these equations can be
made equivalent to that possible with the continuous controller. This second method is
the one selected for the program discussed in this report. The block diagram in fig-
ure 14 shows the manner in which the complete digital computer control system was im-
plemented.

First, the appropriate measured output is sampled and converted to a digital equi-
valent upon which the computer can operate. During the uniform sampling interval T
the computer algorithm is exercised and an optimal controller output u is obtained.
This then is input to the control doors at the next sample time and it is held fixed for
the duration of the sample period T. A sampling period of 1 millisecond was conser-
vatively selected using the closed-loop stability criteria discussed in appendix D.
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Figure 14. - Digital computer inlet control system block diagram.

Systems in which input and output controller information is sampled are called
sampled-data control systems. Various techniques for analyzing such systems can be
found in the literature. Both frequency domain approaches using the z-transform
(refs. 18 and 19) and time domain approaches (refs. 15 and 20) have been used. Since
the continuous formulation for the inlet problem is in the time domain, a time domain
discrete formulation was obtained by using the state transition matrix (refs. 15 and 20).

For this particular control problem with ten estimated states which are not closely
related to distinct physical variables, certain numerical programming problems were
encountered. Techniques used to overcome these problems and arrive at an acceptable
control algorithm are not included in this section since such details are not essential to
a discussion of the experimental results. However, appendix D is included to discuss
in detail the techniques involved in arriving at a practical computer control law.

The experimental performance of the discrete controller is presented in the next
section along with the analog or continuous controller results.

Experimental Results and Discussion

In the experimental program, the system was subjected to sinusoidal airflow dis-
turbances at the downstream endvof the inlet as described in appendix B. Thus, all the
performance data to be presented are in the form of closed-loop frequency responses of
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shock position to an airflow disturbance. The results show how well the controlled sys-
tem regulates against sinusoidal disturbances of fixed amplitude at different distinct
frequencies.

The test program would best have been run with random airflow disturbances as
described by the spectral densities shown in figure 7. This was not done since the dis-
turbance devices (bypass doors) would not have been capable of accurately duplicating
these spectral densities. Also, to measure the frequency of unstarts to a random dis-
turbance would have required considerable running time. This is impractical in the
SWT.

Performing frequency response tests with fixed amplitude sinusoidal signal inputs is
the technique used in past programs to evaluate controller experimental closed-loop
performance. This is a direct way to look at linear time-invariant systems.

The experimental data presented in figures 15 to 23 consist of closed-loop frequency
responses for the three controller designs discussed in the CONTROLLER DESIGN AND
ANALYTICAL PERFORMANCE section. Also included are experimental open-loop fre-
quency responses to evaluate the different controllers. For each controller, compari-
sons are made between the experimental and analytically predicted closed-loop frequen-
cy response performances. Analytical predictions of closed-loop performance are
obtained as follows. Open-loop models of the inlet are defined by the finite-order trans-
fer functions determined in appendix C and represented in the time domain by the matri-
ces of tables II and III. A closed-loop system transfer function is derived and the fre-
quency response is evaluated by using the open-loop models and the appropriate optimal
gains Kc and state estimator. Also, where possible, comparison is made between the
analog and digital computer implementations of the control laws.

Only frequency response magnitudes, not phase angles, are presented. All magni-
tude data are normalized to the open-loop magnitude at 1 hertz.

SPF system frequency response. - Figure 15 is a frequency response plot of the
SPF case A controller design implemented with analog computer components. The un-
controlled or open-loop response of inlet shock position to a downstream airflow disturb-
ance is also shown. It can be seen that control attenuates shock motion by a factor of
at least 10:1 at frequencies of 0.5 hertz or less. However, as the disturbance frequency
increases, the controller fails to attenuate the disturbance as well. In fact, from about
6 to 20 hertz it even amplifies the disturbance somewhat. Beyond this frequency, the
shock position behaves as if the system were open loop. The case A disturbance, for
which this particular control was designed, contains the majority of its disturbance
energy at low frequencies. Thus, a large closed-loop attenuation is produced at the
lower frequencies. The control design assumes what little disturbance energy exists
at high frequency is sufficiently attenuated by the inlet duct dynamics; thus, the closed
loop follows the open loop in this area. The slight amplification of shock motion from
about 6 to 20 hertz probably does not significantly increase unstart frequency, since
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Figure 15. - Comparison of experimental open- and closed-loop frequency responses
of shock position to disturbance airflow using SPF case A analog control.
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Figure 16. - Comparison of analytical and experimental closed-loop frequency
responses of shock position to disturbance airflow using SPF case A analog
controls,
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disturbance energy in this band is small.

Figure 16 is a eomparison of the analog SPF case A control experimental perform-
ance with the analytically predicted closed-loop performance. It can be seen that the
analytical predictions show more attenuation at low frequency than the experimental
values. It was found during the SWT tests that the shock position gain was about two-
thirds the value used in modeling the plant (numerical values of table II) and designing
the controller. This gain discrepancy is the most probable cause for the difference be-
tween the analytical and experimental performances especially at low frequency.

Figure 17 is a comparison between the experimental performance of the analog (con-
tinuous) and a digital computer (discrete) implementation of the SPF case A control de-
sign. The two implementations are, in general, quite similar except for some lack of
low frequency disturbance attenuation with the digital version.

TEF system frequency response. - Figure 18 shows the experimental closed-~loop
frequency response of shock position to a disturbance when the TEF case A control de-
sign is implemented with analog components. The open-loop shock position response is
included as a reference. Compared with the shock position feedback system shown in
figure 15, low frequency attenuation is not quite so good. However, as frequency in-
creases, the TEF system does better in the 6 to 20 hertz range. Since there is less lag
between the Pie signal and the disturbance than between Vs and the disturbance, it is
expected that this system might have an easier job of attenuating disturbances at the
higher frequencies where phase lag is becoming a problem. Beyond 20 hertz, however,
the system appears open loop. Again, this is because for case A little disturbance en-
ergy exists in this region.

Figure 19 compares the experiméntal and analytical frequency responses of the
analog version of TEF case A control. Responses compare very well out to 20 hertz.
After 20 hertz the comparison is not good. The probable cause is that beyond this fre-
quency the analytical inlet model used for design and prediction was not an extremely
close fit on amplitude. This can be seen by looking at figures of the curve fit informa-
tion of figure 3 in appendix C. A more accurate fit would probably have produced closer
agreement between experimental and analytical results.

Figure 20 is a comparison of the closed-loop shock position frequency response of
the analog and digital computer versions of the TEF case A control design. The two
responses are almost identical. As stated earlier, the digital control algorithm was
designed for and used a sampling time of 1 millisecond. This is quite adequate for dis-
turbance frequencies up to 100 hertz; therefore, the close correlation with the continu-
ous analog version as shown in figure 20 is as expected.

Figure 21 presents the closed-loop frequency response of the analog TEF case B
controller design. Also shown is the inlet open-~loop frequency response. It should be
remembered that case B has a certain amount of disturbance energy in the midfrequency
range and not as much at the very low frequencies. As a result, the controller perform-
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Figure 17. - Comparison of closed-loop experimental frequency responses of shock
position to disturbance airflow using SPF case A analog and digital controls.
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Figure 18. - Comparison of experimental open- and closed-loop frequency responses
of shock position fo disturbance airflow using TEF case A analog control.
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Figure 19, - Comparison of analytical and experimental closed-loop frequency
responses of shock position to disturbance airflow using TEF case A analog
controls,
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Figure 20. - Comparison of closed-loop experimental frequency responses of shock
position fo disturbance airflow using TEF case A analog and digital controls.
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Figure 21. - Comparison of open~and closed-loop experimental frequency responses
of shock position to disturbance airflow using TEF case B analog control.
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Figure 22. - Comparison of case A and case B closed-loop experimental frequency
responses of shock position to disturbance airflow using TEF analog controls.
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ance shown in figure 21 does not attenuate the low frequency disturbances as much as
either of the case A controllers, but it does produce more attenuation in the midfrequen-
cies out to about 20 hertz. This is shown by figure 22 which compares experimental
analog versions of the TEF system for both the case B and case A designs. Case A
provides very little attenuation after 3 to 4 hertz, whereas the case B design ''keeps
working'' out to 20 hertz. The slight magnification over the open loop shown in figure 21
is difficult to explain except that control in this region is quite difficult because of the
great deal of phase lag from the inlet at these frequencies.

Figure 23 presents a comparison of the experimental response of the analog TEF
case B design and its analytical counterpart. The prediction is quite good, especially

10—
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Figure 23. - Comparison of closed-loop analytical and experimental frequency
responses of shock position fo disturbance airflow using TEF case B analog
controls.

in the midfrequency range. In the area of 80 to 100 hertz the analytical prediction shows
better disturbance attenuation than the experimental. This is probably due to the limited
order inlet model used in the analytical design. The additional phase shift of the actual
inlet causes the experimental data to be somewhat degraded in this region.

Summary of experimental results. - To summarize the experimental data, several
observations can be made. In general, the three controller designs performed in agree-
ment with their analytical predictions except for the shock feedback system SPF, where
a difference in inlet model gain was found to exist. Each of the three controllers was
implemented with an analog computer. Only two of the three were put into discrete form
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and implemented with a digital computer. Where the two were compared to their analog
counterparts, equivalency was quite good. In general, the experimental program point-
ed out the problems of designing and then implementing linear optimal controller de-
signs.

Conclusions and Recommendations

It has been demonstrated that inlet controllers which minimize the expected frequen-
cy of unstarts can be designed and implemented. It was shown that controller charac-
teristics depend strongly on the spectrum of the disturbance. Both shock position (SPF)
and throat exit static pressure (TEF) were used as feedback variables. Because of the
difference in noise levels on these signals, it was found that SPF was better for disturb-
ances rich in low frequencies and TEF was better for higher frequency disturbances.

Analytically predicted and experimental closed-1loop frequency responses were found
in general to be in close agreement. Experimental controllers were implemented with
both an analog computer and a digital computer. Analog and digital results compared
quite favorably.

This attempt at applying linear stochastic optimal control theory to inlet control
problems has, therefore, met with some success. The possible benefits which can be
gained from using this relatively new theory seem to be great. However, this investi-
gation exploited only a small fraction of the capabilities of the stochastic optimal control
design approach. The remainder of this section contains recommendations as to areas
that might warrant further investigation, both analytically and experimentally:

(1) Consideration should be given to designing an optimal controller for both shock
position and throat Mach number for both atmospheric and compressor face disturb-
ances. This problem could use the multiloop capabilities of the optimal control design
technique.

(a) Multiple measurements could be used: throat exit and compressor face
pressure, throat Mach number, cowl lip Mach number, etc. Experiments would

be needed to determine more precisely various measurement channel noise levels

and spectrum of the compressor face disturbance.

(b) Controlled variables such as spike position (and possibly engine speed)
as well as bypass door opening should be considered.
(c) A quadratic performance index could be used involving mean-square

values of shock position and throat Mach number plus penalties on bypass door

opening, spike position, actuator slewing velocities, etc.

(2) Sensitivity studies should be conducted on future inlet controller designs to de-
termine the degradation in performance when inlet or noise parameters vary from those
assumed in the design process.
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(3) Controllers developed in the present study tended to be somewhat complex.
Therefore, methods of developing simpler optimal or suboptimal controllers should be
studied. Some approaches might be as follows:

(@) Reduce the order of the open-loop inlet model and compare the results

(on the more complete inlet model) using controllers based on the lower order

model with those of the more complex model.

(b) Investigate techniques of simplifying controllers which have been designed
for the complete inlet model.

(4) The approach used in this study for digital control is not unique; thus, alternate
approaches to optimal digital computer control of inlets should be studied. The goal is
to increase the sampling period while achieving performance comparable to continuous-
type control. This could be done by:

(a) Studying various ways of discretizing inlet and/or controller differen-

tial equations.

(b) Developing a method for directly determining the optimal discrete-time
control law for a continuous-time system.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 10, 1972,
501-24.
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APPENDIX A

SYMBOLS
A system matrix, nXn
B control matrix, nX ¢
C output matrix, I Xn
c dimension of u
D plant disturbance matrix, nx d
d dimension of w

Gppp(s) bypass door transfer function, (kg/sec)/V
GDUCT(S) inlet duct transfer function, (N/ cmz)/ (kg/sec)
GINLET(S) overall inlet transfer function, cm/(kg/sec)
GNS(s) noise shaping transfer function, ND

Ggpocx(®) inlet shock position transter function, cm/(N/cm?)

H measurement matrix, m X n

I identity matrix

J performance index

J eq equivalent quadratic index

Kc control gain matrix, ¢ X n

K e estimator gain matrix, nX m

k weighting factor

4 dimension of y

m dimension of z

n dimension of x

P diagonalization transformation matrix
pressure, N/cm2

Pie throat exit static pressure, N/cm2

q transformed state vector, n X m

r number of terms in truncated series
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Laplace variable, sec™1

sampling period, sec

time, sec

control vector, ¢ X 1

measurement noise vector, m X 1

shock position measurement noise, cm
throat exit static measurement noise, N/ cm2
equivalence coefficient

equivalence coefficient

plant disturbance vector, d X 1

control airflow, kg/sec

compressor face disturbance airflow, kg/sec
total inlet airflow, kg/sec

state vector, nx 1

output vector, 7 X 1

shock position, cm

arbitrary square matrix

measurement vector, m X 1

shock position tolerance, cm

noise shaping transfer function parameters, rad/sec

discrete estimator control input vector, nX ¢

discrete measurement vector input to estimator, n X m

discrete plant control input vector, nX ¢

discrete disturbance vector, nX d

expected frequency of unstarts, unstarts/sec

closed loop discrete state transition matrix, 2n X 2n
estimator discrete state transition matrix, n xn

plant discrete state transition matrix, n X n



o, RMS control effort, V
0121 mean-square confrol effort, V2
ogv mean-square value of control airflow, (kg/ sec)2
c
0‘2”d mean-square value of disturbance airflow, (kg/sec)2
2 " 2
oy mean-square shock position, cm
s
03 mean-square shock velocity, (cm/sec)2
S
T dummy variable
T4 transportation lag, sec
Superscripts:
differentiation with respect to time
* trial values
- optimal estimate of a vector
T transpose
Operators:

PSD() power spectral density of

O)x

normalized to 1 Hz
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APPENDIX B

APPARATUS AND PROCEDURE
Inlet Description

The inlet used for the investigation was an axisymmetric mixed compression type
with 60 percent of the supersonic area contraction occurring internally at the design
Mach number of 2.5. A cutaway view of the NASA designed inlet is shown in figure 24.
Specific characteristics of\the inlet as well as the tunnel test conditions are tabulated in
table IV. Additional aerodynamic design details and steady-state performance charac-
teristics of the inlet are given in references 21 and 22. The dynamic responses of vari-
ous inlet internal pressures and of normal shock position to airflow disturbances are
reported in reference 6.

Shown in figure 24 are the inlet's translating centerbody and overboard bypass doors
of which there are a total of six. Both the bypass doors and centerbody are hydraulically
actuated and electronically controlled. Three of the symmetrically located bypass doors,

" Diffuser .
exit
station

Overboard
bypass doors.

CD-9219-12

\-Translating
centerbody

Figure 24, - Cutaway view of inlet model.
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TABLE IV. - DETAILED INLET SPECIFICATIONS

AND TUNNEL TEST CONDITIONS

Inlet
Cowl lip diameter, cm 47.3
Capture area, cm2 1760
Capture corrected airflow, kg/sec 16.2

Tunnel test conditions

Mach number 2.5

Total temperature, K 315

Total pressure, N/cm2 8.95

Specific heat ratio 1.4

Reynolds number (based on cowl-lip 3.88x108
diameter)

Angle of attack, deg 0

Inlet orifice termination description

Choke plate area, cm2 598

Flow coefficient 0.985

Location of choke plate from cowl lip, 146.5
cm

driven in parallel, were used to provide sinusoidal disturbances in diffuser exit correct-
ed airflow. The remaining three bypass doors, also driven in parallel, were used as the
manipulated variable of the various normal shock controllers.

inlet Instrumentation

Figure 25 indicates the location of pressure taps connected to dynamic strain gage
pressure transducers used in the investigation. The pressure transducers were close
coupled to the pressure taps to enhance their response capabilities. Details of the
location, response, and usage of the pressure sensors are documented in references
8 and 16.
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Station, cm from cowl lip

Figure 25. - Details of inlet including instrumentation locations.

Shock Sensing

In this program eight throat static pressure signals were used as inputs to an elec-
tronic normal shock position sensor. The logic required for this sensor was imple-
mented on both a general purpose analog computer and on a digital computer. The de-
sign details of this sensor are discussed in references 12 and 16. The output produced
by either implementation was a stepwise continuous signal indicative of shock position.
The various shock position controls tested used either the throat exit static pressure
Pie OF the stepwise continuous shock position sensor as the feedback signal for control.

Controller Implementation

The inlet controllers designed by modern control techniques were implemented on
both a general purpose analog computer and on a digital computer.

Figure 26 is a photograph of the general purpose digital computer used for imple-
mentation of both inlet and engine controls. The system, shown in block diagram form
in figure 27, consists of four major units:

1. A digital computer with 16 384 words of memory, a read-restore memory cycle

time of 750 nanoseconds, and a word length of 16 bits

2. A digital interface capable of converting both analog and frequency signals to

computer compatible digital words and converting computer generated words to

analog and logical outputs
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process-
ing unit

Figure 26. - Digital control computer system.

High-speed

Teletype paper tape

Digital
computer

!

Digital
interface
equipment

Signal
processing
unit

Intet Digital controller
measured output signals
signals fo inlet servos

Figure 27. - Schematic of digital computer setup.
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TABLE V. - DIGITAL CONTROL COMPUTER SYSTEM CAPABILITIES

Digital computer

Magnetic core memory size, words .
Word length, bits plus parity . .
Memory cycle time, nsec

Add time, usec .

Multiply time, usec .

Divide time, psec .

Load time, usec

Indirect addressing

Indexing

Priority interrupts

16 384

16

Y 511
e e e e ... LB
4.5

. . 8.25

1.5

Infinite

. Total memory

28 separate levels

Index registers . . . . . . . . 2
Interval timers 2
Analog acquisition unit
Overall sample rate (maximum), kHz . . 20

Resolution of digital data, bits
Output code .

12 (plus sign)

. . Two's complement

Number of channels . . . 64
Input range, V full scale . . . . . . . £10
Conversion time, psec . 38
Total error with calibration, percent . 0.073
Analog output unit
Total number of digital -to-analog conversion channels (DAC) e .. . . 26
Resolution 13 bit DAC (10 channels), bits (12+1) 12 (plus sign)
Accuracy (13 bit) DAC, percent of full scale . +0.05
Resolution 12 bit DAC (16 channels), bits (11+1) 11 (plus sign)
Accuracy (12 bit DAC), percent of full scale . 0.1
Output voltage range, V full scale . .. . 10
Slew rate, V/pusec, 1
Priority interrupt processor
Number of channels . . 10
Input voltage range, V . . . 10

Computer switching .
Comparator hysteresis, mV
Comparator output, V .

. ‘Trigger on rise or fall
. Adjustable from 35 to 650

7
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3. A signal processing unit which provides signal conditioning and monitoring capa-

bility between the digital interface and the propulsion system to be controlled

4. Programming peripherals consisting of a high-speed, paper-tape reader and

punch and a teletype

The capabilities of the system are given in table V and a comprehensive description
is available in reference 17.

All inlet pressure measurements were passed through signal conditioners and iso-
lation amplifiers to provide high-level (-10 to +10 V) inputs to the digital interface
equipment. This unit contains a random access multiplexer, a sample and hold ampli-
fier, and a 13-bit digitizer. The complete digitizing process from channel sample com-
mand to entry of the digitized measurement into computer memory requires 50 micro-
seconds. This process is automated through the use of a block data transfer unit which
ties up the main frame for only one memory cycle per word transferred. Completion
of the sampling process is conveyed to the computer by a priority interrupt from the
block data transfer unit.

Digital commands are issued directly from the computer main frame to the 13-bit
digital-to-analog converters. These outputs are passed through isolation amplifiers to
provide ground isolation of the digital system and then to the servoamplifiers driving the
manipulated variables.

Test Procedures

Both open-loop (no input to control bypass doors) and closed-loop frequency re-
sponse tests were run. For all tests, the steady-state operating point of the normal
shock was located near the middle of the eight throat static pressure taps. This was
accomplished with an appropriate steady-state setting of the six bypass doors. An ap-
propriate disturbance amplitude was determined from the open-loop response tests. For
the open-loop tests, the three disturbance doors were oscillated sinusoidally at an am-
plitude sufficient to move the normal shock over the eight throat static taps (fig. 25) at
1 hertz. This was the disturbance amplitude used at all frequencies for both the open-
and closed-loop testing. In addition to open-loop tests, closed-loop frequency response
tests were run using both the throat exit static pressure Pie and the stepwise continuous
shock position sensor output as measured variables. These tests were intended to de-
termine the capability of the feedback controllers to regulate inlet shock position in the
presence of compressor face disturbances.

For the frequency response tests, both magnitude and phase data for a few signifi-
cant signals were determined online using a commercial frequency response analyzer in
the control room. These signals, as well as many others, were recorded in analog form
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on magnetic tape for reduction at a later time. All frequency response data were plotted
in the form of Bode plots. The magnitude response data were normalized to the magni-
tude at 1 hertz.
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APPENDIX C

FREQUENCY RESPONSE CHARACTERISTICS OF THE UNCONTROLLED
(OPEN-LOOP) 40/60 SUPERSONIC INLET

A general physical description of the mixed compression (40/60) inlet used for the
program discussed in this report is presented in appendix B (figs. 24 and 25). Frequen-
cy response data describing the dynamic characteristics of this inlet were obtained in
the test programs described in references 7 and 8. Figure 28 describes in block dia-
gram form the particular inlet transfer functions which were obtained. Figure 28 indi-
cates that an incremental airflow disturbance Wy occurring at the downstream or com-
pressor face end of the inlet will propagate upstream, resulting in a pressure variation
at the throat exit (pt e) pressure sensor location. It will also cause motion of the normal
shock Vg about its quiescent or desired steady-state location.

Pre

P y
—={ Gpyctls) = _v% (s) Gspock!s) = ﬁ {s) "2

s

Figure 28, - Block diagram of inlet characteristics fo downstream airflow disturbance.

The data presented in this appendix are used as a basis for determining transfer
function relations GDUCT’ GINLET’ and GSHOCK which approximately describe the
inlet. These relations serve as a starting point with which to undertake the control de-
sign in the CONTROLLER DESIGN AND ANALYTICAL PERFORMANCE section.

Shock Position Measurement Model (GlNLEr(S))

The first configuration to be considered is the overall inlet response of shock posi-
tion Vg to the disturbance w; - The data points-in figure 29 show the experimental am-
plitude and phase frequency response performance of the inlet shock position Vg to the
airflow disturbance Wy at the compressor face station. The amplitude data have been

normalized to the value at 1 hertz. To ensure the linearity required for future transfer
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Figure 29. - Comparison of analytical and experimental frequency response performance of shack position to
inlet airflow.



function representations of the inlet frequency response data, the airflow disturbance w;
was of a small enough amplitude to encounter as few nonlinear effects as possible.

An analytical representation of the experimental data presented in figure 29 was ob-
tained by curve fitting the frequency response characteristics of an approximate transfer
function model to the amplitude and phase data. Equation (C1) is the result of the curve-
fitting effort: '

-3
16. 25 (__S + 1>e'4' 010 7s
CrypeT®) == 6) = 210 5 < (C1)
LA (s . 1) s® . 0.65 4 kg/sec

— +
80 3652 365

Included in this equation is the steady-state gain relation for the inlet. The solid lines
of figure 29 give the frequency response of equation (C1l), where the amplitude response
has been normalized to the amplitude response at 1 hertz. The approximation of equa-
tion (C1) is quite good out to 100 hertz for both amplitude and phase. Beyond 100 hertz
the amplitude response of the approximation falls off and deviates from the experimental
data while the phase angle is still reasonably accurate. The approximation could, of
course, be improved by the addition of more poles and/or zeros to the transfer function
GINLET(S) of equation (C1). It is felt, however, that improved higher frequency (100 to
200 Hz) model accuracy at the expense of increasing the complexity of equation (C1) was
not warranted.

Throat Exit Static Pressure Measurement Model (G DUCT(S) and GSHOCK(S’)

The second configuration to be considered is a model which involves two distinct
frequency response relations. These are the relations of the shock position measure-
ment to a variation in the throat exit static pressure and the variation of Pie to a com-
pressor face disturbance W; .

The data points of figure 30 show the experimental frequency response of the throat
exit static pressure Pie to the disturbance w. The coefficients in the transfer func-
tion of equation (C2) were found by curve fitting the data of figure 30:

-3
D 1.52 (__§_+ 1)(i+ 1)e—1.5><1o s )
_te (s) = 210 200 N/cm c2)

i 9 kg/sec
(_s_+ MsY . 2(0.3)s +1
80 365 365

Gpyer(®) =
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The frequency response performance of equation (C2) is given by the solid lines of
figure 30. The amplitude response fits well to about 80 hertz at which point it drops off
and does not duplicate the resonances of the experimental inlet data. The phase angle
response in figure 30(b) is quite good to 140 hertz. The approximation therefore is felt
sufficiently accurate for the purpose of controls design.

The data points in figure 31 show the experimental frequency response of shock
position Vs to the pressure Pie- Since all frequency response information was deter-
mined by an airflow disturbance ] at the compressor face, the data in figure 31 were
obtained by finding the difference between the experimental data in figures 29 and 30.
The transfer function approximation which was curve fit to the data in figure 31 is given
by

-3
y -2.5%10 “s
G (S) :_§_ (S) - 10. 68e cm (03)
SHOCK s 9
Pte = 4 1) N/cm
500

The frequency response performance of equation (C3) is given by the solid curves
in figure 31.

50



Normalized amplitude ratio, ptelWiIN

Phase angle, deg

— Analytical transfer
function {eq. (C2)
O Experimental

L | L L

0 L1 I N N I R B B B
1 2 4 6 8 10 20 40 60 80 100 200 400 600 800 1000
Frequency, Hz

(b) Phase response,

Figure 30. - Comparison of analyticai and experimental frequency response performance of py, fo inet airflow.
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APPENDIX D

DISCRETE CONTROLLER FORMULATION

The inlet discussed in this report is being controlled by an optimal feedback con-
troller described by continuous linear time-invariant differential equations. When ex-

pressed in matrix form, these are equations (16) and (17). These equations, when they
have been slightly rearranged, are

i(t) = (A - K HR() + Bu(t) + K z(t) (D1)

u(t) = -chc(t) (D2)
Note that z(t) is the controller input and u(t) the controller output. As discussed in the
main text, the optimal controller was implemented with a digital computer as well as an
analog computer. The digital version is shown in figure 14, In order to obtain a digital

controller algorithm, a discrete-time approximation must be obtained for the continuous-
time equations (D1) and (D2). The method used in this report is discussed in the follow-
ing sections. It should be pointed out that the method used for obtaining the digital con-

trol algorithm is not unique, and the technique used is only one of a number of possible
approaches.

Discrete Control Algorithm

The solution to the vector-matrix differential equation (D1), at time t; ,, given the
state X at time t, is

i(tk+1) = ¢e(tk+1 - tk)}z(tk) * ftktk+1 ¢e(tk+1 - 7)Bu(r) d7 +,/;ktk+1 ¢e(tk+1 - T)KeZ(T) dr

(D3a)

where

@ oltey1 - ) = exp[(A - KBty ; - ty)]

¢e(tk+1 -7 = exp[(A - KeH)(tk+1 - T)]
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Let tk =kT and tk 1= kT + T be successive sampling instants, separated by sample
period T. If it is assumed that u and z are constant over kT =t <kT+ T, z and
u can be moved out from under the integral signs in equation (D3a) and an expression
can be obtained for X(kT + T) in terms of X(kT), u(kT), and z(kT). Since the digital
computer produces a stepwise continuous signal u, u is constant during a sample time
(u(r)=u(kT), kKT = 7 <KT + T). However, z is not; thus, we must assume that T is
small enough so that z is approximately constant during the interval:

z(1) 2 z(kT) KT =7<kT+T

Making these substitutions, equation (D3a) becomes

kT+T
KT +T) = @ (T)RKT) + {’II;T goe[(k +1)T - 7]B d’r} u(kT)

kT+T
+{'/1;T goe[:(k + 1T - ﬂKe d'r} z(kT) (D3b)

But since the two integrals in equation (D3b) are independent of k, we can evaluate them
for k=0:

T T
XKT + T) = cpe(T)ﬁ(kT) + [/(; (pe(T - 7)B d'r:l w(kT) + [f qDe(T - T)Ke d'r:! z(KT)
0

(D3c)

. ) T T
(KT +T) = o (TIRKT) + fo 9o(T)B drlu(kT) + £ 9o(K, 7jz(kT) (D)

Since
(A—KeH)'r
Po(7) =€
then
d (A-K_H)T
e _ A-KHe ° =@A-KHol/)
e
dr
Therefore
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9e() dr = (A - K ) dg, (D5)

and
[ ogmar-[ @a-xmlag, - @- k@ e -1 (D6)
0 0
Substituting equation (D6) into equation (D4) yields

_1[ A-x )T
REkT + T) = goe(T)i(kT) + {(A - KeH) e - I{ ¢Bu(kT)

A-K H)T
+ {(A - KeH)'l[e( T I]}Kezac'r)

Therefore, the discrete controller computer algorithm is defined by equations (D7) and
(D8):

X&T +T) = (pe(T)i(kT) + I‘ceu(kT) + I"mz(kT) (D7)
where
(A-K_H)T
9 T)=e °©
A - K H)T
Ty, =(A- KeH)'ll:e( T _ I]B
A-K_H)T
r =@- KeH)'l[e( T _ I]Ke
and

u(kT) = -chi(kT) (D8)
The matrices ¢ e(T), I and T\ must be numerically determined for the appro-

priate sampling time T. Acceptable sampling times are those which result in accept-
able stability of the complete system operating with the sampled-data controller.
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Stability Considerations

To determine the stability of the closed-loop sampled-data system, the continuous
inlet plant described by equations (3) and (5) (repeated here as eqs. (D9a) and (D9b)) can
be put in discrete form:

x(t) = Ax(t) + Bu(t) + Dw(t) (D9a)
z(t) = Hx(t) + v(t) (D9b)
x(kT + T) = qpp(T)x(kT) + I‘Cpu(k'l‘) + T qw(kT) (D102)
z(kT) = Hx(kT) + v(kT) (D10b)
where
¢p(T) = AT

-1, AT
I‘cp_A (e - I)B

Ty= A 1T pp

Here again, an approximation is made that w(t) and v(t) are assumed to be constant
over the sampling interval. Combining equations (D7), (D8), (D10a), and (D10b) results
in the following expanded matrix equation, which represents the closed-loop sampled-
data system:

|:$;(kT ¥ T)] _[#eM - TeeKe | IpH [:‘c(kT)] | tm i 0 [1(1_‘}2] (D11)
d

X(KT + T) T K, o) XD |70 A Ay
| |
Let
o (T)-T K. | r_H
¢ o, (T) = —e—f—l-{-cﬁf' _1—1(1—3 (D12)
cp e { %p

The eigenvalues of ¢CL(T) determine the stability of the closed-loop system. A
sampling time T which results in an eigenvalue with a magnitude greater than one
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(outside unit circle in the complex plane) is unacceptable. This criteria was used in
determining the largest acceptable sampling period.

Matrix Exponential Expansion

— —

Matrix exponentials such as e and € can be determined by using a

matrix form for the series expansion of e raised to some power. This technique was
used in arriving at an acceptable method for determining the matrix coefficients of equa-
tion (D7). A brief description of the procedure using a square matrix Z is

2m2 3m3
eZT=I+ZT+ZT +ZT + (D13)
2! 3!
and
-1, ZT -1 7272
Z e -D=27 ZT + ... (D14)
2!
If the series is truncated after r terms, equation (D14) becomes
2
771 @Z2T i+ 207 v EZT |y 4, 4 2T (p L ZT (D15)
2 3 r-1 r
and equation (D13) becomes
ZT 7T 7T 7. T2
e? =14+ ZT +=—|T+. . .+ T + (D16)
2 r-1 r

The computer subroutine STM whose listing appears at the end of this appendix actually
implements equations (D15) and (D16). Enough terms of the expansion are used to en-
sure that the matrix elements have converged with sufficient accuracy.

Numerical Considerations

The numerical values of the elements of the matrices ¢ e(T), r ce’ and I‘m for a

57



stable sampling time T were found to have a wide spread. The computer on which the
control law of equations (D7) and (D8) was programmed used fixed-point machine lan-
guage. Thus, the numerical spread of the matrix elements created significant scaling
problems in programming the controller. Also, the vector-matrix multiplications re-
quired to implement equation (D7) (especially ¢ e(T)ii(kT)) took too much computer time.
This was because ¢ e(T) had few nonzero elements. To alleviate some of these prob-
lems, steps were taken to (1) condition the numerical elements to reduce scaling prob-
lems, (2) reduce the number of elements in the ¢ ¢ mMatrix, and (3) provide a check on
the final results.

It was found that a convenient way to accomplish steps (1) and (2) was to use a block
diagonal transformation on ¢ e (see ref. 23). This brought the numerical values of ¢ e
closer together and eliminated many of the multiplications required in executing the
computer control law. The block diagonal transformation is now outlined. Let

PG(kT) = R(kT) (D17)
PGKT + T) = X(KkT + T) (D18)
Substituting equations (D17) and (D18) into equations (D7) and (D8) yields
PGKT + T) = goe(T)Pﬁ(kT) + I‘ceu(kT) + I‘mz(kT)

or

1 1

4T + T) = P'lcpe(T)Pd(kT) + PIT _ u@T) + PIr () (D19)

and
u(kT) = —KcPc](kT) (D20)

The matrix P is a transformation matrix whose columns are the eigenvectors of
@ e(T) if all the eigenvalues are real. If there exists a complex conjugate pair of eigen-
values, the column of P which would correspond to the first half of the eigenvalue pair
is set equal to the (vector) sum of the pair of eigenvectors. The column of P which
would correspond to the second half of the eigenvalue pair is set equal to the difference
of the eigenvector pair. The resulting block diagonal matrix, P"lcp e(T)P has the real
eigenvalues of ¢ e(T) on the diagonal. When complex conjugate pairs are present, the
real parts lie on the diagonal with the imaginary parts on the off-diagonals. Where ¢ e(T)
has n2 nonzero elements, P'lga e(T)P has n, if all eigenvalues are real, and 3n - 2
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if all eigenvalues are complex. This represents a considerable reduction in computer
operations required in implementing equation (D19) as compared to equation (D7).

Once the transformation matrix P is determined, the numerical values required by
the controller can be determined. The transformation results in a transformed set of
estimated states §. The control output is determined by the transformed control
weighting -KCP on these new estimated states. In determining the control output, each
of the transformed state estimates must be calculated. Therefore, the programmer
must know what will be extremes or worst case values of these states when operating
within the closed-loop experimental system so that he can properly scale the states. To
assist the programmer in this area, the system was analyzed analytically to determine
worst case magnitudes of the estimated states. This was done by subjecting the closed-
loop discrete system to inputs equivalent to the worst case compressor face airflow dis-
turbance anticipated for the experimental program. For the transformed controller,
the closed-loop system, as defined by equations (D19) and (D20) together with plant
equations (D10a) and (D10b), is

-1 -1 b1 1. |

4T + | _ [P 2P - P T eKP  PTpH fger] [P T O v(sT)

TTTTT K P T +——-90_p— x&T)| [0 —_:_r‘_d w(kT)
|

(D21)

The computer subroutine used to accomplish evaluation of the transient performance
of the closed-loop sampled-data inlet system is included in this appendix.

Supporting Computer Programs

In this section is a brief description of the computer routines used in a large central
batch processing facility to arrive at an acceptable discrete controller capable of being
expeditiously and reliably programmed on the digital control computer system.

Shown in figure 32 is a flow chart of the computer program and its associated sub-
routines. Once the appropriate constants representing the continuous inlet and its
selected estimator/controller are read into the computer, the programs use subroutine
STM and a preselected value of sampling time to determine the discrete equivalent of
the control and inlet plant. Eigenvalues of the ¢ CL matrix are then determined for
the particular T used. If the eigenvalues are all within the unit circle, then subroutine
DIAG is used to effect a coordinate transformation of the state estimator. Finally, the
complete closed-loop sampled-data system is exercised through a transient. These
transient data show the sizes of the various computer estimated states and feedback con-
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Input data
and trial
sample time

Obtained discrete
state transition
matrix of estimator
(A - KgH)

Obtain discrete
state transition
matrixof plant (A)

Form
diagonalized
estimator

Print
diagonalized
estimator
matrix and
measurement
and-control
vectors

Form closed-
loop discrete
state transition
matrix using
diagonalized form
of estimator

Obtain Eigen-
values of com-
plete closed-
loop discrete
state transi-
tion matrix

(o)

Yes

Compute step
response of
complete closed-
{oop model to
unit step
disturbance

Print
estimator

state responses
and plant
responses

Figure 32. - Flow chart for digital computer program (DIGCON).



trol input and thus are an aid in machine language programming the computer controller.

Listings of the computer programs used in determining the discrete control laws
are included in this appendix. Table VI lists the significant equation variables with their
corresponding FORTRAN designations. Other information concerning the attached pro-
gram listing is contained in various comment statements appropriately located through-
out the program.

TABLE VI. - CROSS REFERENCE LIST

FOR DISCRETE CONTROLLER

VARIABLES
Equation variables | FORTRAN variables
P PHE
T GAMU
r m GAMZ
@ P PHP
r cp GAMB
T d GAMD
K.P KCP
-1
Pr m GAMZP
-1
P°T ce GAMUP
-1
P T ¢ eK e P GUKC
plr_u GzH
r cchP GBKC
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(o2}
[

$IBFTC DIGCGN  LIST

Fodl e A 30 X e ok Ak e 3l ofe e 3R o0 R AR e e K 3 o RNk ok ek Ak e e e e Xe ik ok Ak ok a3k ok e ek e e dle e 3 ook oK Rk X e ke e Bk e ok ok

NIGCON DETERMINFS A UDISCRETE +GRM OF A FEECBACK CONTROL

LAw SUITABLE FUR IMPLEMENTATION WITH A DIGITAL COMPUTER.
CONTROL WEIGHS ESTIMATES GF THE SYSTEM STATES OGBTAINED WITH

A KALMAN FILTERe PRELDICTIUN CF TRANSIENT RESPONSE PERFORMANCE
(1¢ CLOSED LO0P SYSTEM TO A STeP DISTURBANCE IS ALSO INCLUDED.

ThE FOLLUWING SUBRGUTINES AaKE PART GF THE [pM SSP

GMPRL = MULTIPLIES Twl GENERAL MATRICES TO FURM
A RESULTANT GENERAL MATRIX.

FACTR = PRIVIDES FACTURIZATION OF THE INPUT MATRIX
INTO A PROLUCT OF A LUWER TRIANGULAR MATKIX
AND AN UPPER TRIANGULAK MATRIX.

HSHG == REOGUCES A REAL MATRIX TO ALMOST TRIANGULAR
(HESSENBURGIFUKM.

DMINV = INVEKTS A UOUBLE PRECISICN MATKRIX YIELDING
A DOUBLE PRECISIUN KESULT.

UTHER SUBRDUTINES CALLEDL BY ULIGCON ARE EIGORy STMe AND DIAG.
LISTINGS FUR THESE ARE INCLUDED.

A e e o e 2 e e e A R ke % ek ok K e 4 ok Ak v ok X X ok Rk o sk et e e o ak ke e kol Bk e ok e e ok ok ke ol 3 ook ofe Bk ok A kR ROk ok

DIMENSICHN OF VARTABLES
A(NeN)

BINL, ()
H{MeN)

KCIC NI
KE{N.M)
DiN.C)
CC(MeN)
SIANG(NsN)
GBRC NN
GUKC{N.N)
FXT1{NWN)
FI{NsN)
PHP{NWIN)
GZRH{N«N)
GAMAT (NN
GAMBIN.C)
GAMGC(N.C)
KCP{C+N)
XS{Ms 1)
PS56(Me 1)
PERIGLZ2N«2N)
PHFSB{ZN+2N)
XBIGI2N, 1)
XNBIGIE2N. 1)
7BIG{(2.1)
EX1IBIG(2nN. 1)
EX2BIG{ZN. 1)
GAMBIG(Z2N.2)
RRZ{ZN)
RIZ{2N)
MAG212N)
PEE(NIN)
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1

O O s VNP N -

GAMUINLC)

GAMZ (N C)

TCineN)

PRIDI(MNN)D

GANUP(MN.C)

GAMIPIN.C)

AAALNN)

FIGI{neNe2)

CPRIN)

CPIAN)D

RR{N)

RI(N)

CRIN)D

CI(N)

AH(NeN)

LwVDIN)

MW VDI(N)

PPHIDINN)

PHIP(N.N)

TT(NWN)

EXTLo{NN)

PERNIN)D

IPERNIN)

IPERIN)

DCINeN)D

EFD(NN)

Y{Nesl)

SDiIN. 1)

FXINJ1)

WS{N.1)

GRALNGD)

EXT2{2Nes2N)

PERKIZN(ZN)

IPERZN{ZN)

IPERZ{2N)

PI2S(2MNe2N)

P2{2Ne2N)

RD2{2N. 1)

772(ZN.1)

QS1(2N. 1)

QP2(2Z2Ns1)

YD2(2Ned)

CLMMON  / BLCA /7 A(LQ+10) B{10yids H{L+10)y KC(L+40)s KE(LOs1D»
DiLl0O+1)e CC(Le10)

DIMENSIUN  SING(LOe10) s GBKL(10,102y GUKC{10410),
EXT1€10+10C)s FE10910G)s PHP{(LCo10)y GZH(LU»10)y» GAMAT (13,10,
GAMBL10+1)e GAMDCLO#L) s KUPE1:10) s XS(Llelds PS6(Lsldy
PRATG(20020)¢ PHESBLZ2G+20) s XBIG{20s1) 9 XNBIG{LO+1ds ZBIG(2401),
EXIBIGL2001)e EX20IG(2001)s GAMBIG(204+2) 4 RR2(20), RIZ2(20),
MAGZ2(20)e PHE{LOIU) sy GAMUILGe1)s GAMZ(LUWL) s TO(L0,10)y
PHIG(10¢10) s GAMUP{L1O41) e GAMIP{LO+1)y AAA(10+10)s EIG(LO»10+2),
CPRU10) s CPICLO)s RRELU) s RICL102s CR{1CY,y CI(10), AH(10,10),
LwvD{10)e MwVUIL1O) e PPHIU(LUW1U) s PHIP(10+10)y TT(10,510),
EXTLI6(10+10)e PERNC(10)s IPERN(L1O)s IPER{10), DO(LO,10),
ED(LO1G)e Y(1Ue1)y SDCLU12» EX(10s1)s OS{L0s1)s QQO{10+1),
EXT2(20420), PERZN{2U)s IPERZN(2D)y [PERZ2(20), P25(20,20),
P2E20420)s Q2(200h) Z2(020¢1)s @S51(20:s1) 4 WP2(20+1)s YD2(20,1)

NDOUBLE PRECISION Aes Be He KCo KEs EXTls TDs Fy DTs PHEs GAMU,

1 GAMZ. PHP+ LAMBe GAMBCs Do CLs PHIDs GAMUPy GAMZPs KCPy TT. PPHID,
7 PHIP. EXIBIGe EX2b1Gs XBlbe ZblLe XNBIGe GAMBIGs P5bs XS» GAMAT,
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(e IaRa]

aNakeBele)

oD

[Nl

3

1

OV Ud N

PHBIGe GZHs GBKC, GUKC

RFAL MAGZ

INTEGER C

COMMON 7/ FURM /7 VFMT(Li0.0)s FMTLO)

NATA ((VFMT (Lsd) J = 1s0)s I =

/ 6H + OH s OH v OH
6H + OH v &H v 6H
[+14] v OH + OH v OH
6H s+ 6N + GH v 6
6H +» OH + OH + bH
bH v bH y OH y LH
6H + bH + 6H y O6H
6H v OH sy 6H y 60
6+ « bHH s 6H s OH
oH ¢ bH » OH » GH

IGP IS THE PRINT VARIABLE

IF IGP = O, THERE WILL BE STANDARD GUTPULT

iF 10P = 1s THERE Wil BE EXTENUED CUTPUT

IGp = 0

WRITE (6+3%)

N2 = 20

N = 10

M=1

C =1

DT = 200

KMAXE = 50

KMAXP = 50

Do 4 I = 1eN

N0 3 K = 1.0

KCP{K 1) = 04000

GAMU{T.K) = (0.0D0

GAMZI {I+K) = 0000

GAMB{ I +KI = JediU

GAMBLI+Kk) = Q000

NO 4 J = 1eoN

GUKC{T+J) = Ue0DO

GZR{T«4) = 0.0DO

GRKC{ 1+d) = U«0D0

FXTI{Tsdd = U0U0

rCRM  (KE * H)

30 % K = 1l+N

N0 5 1 = leN

DU 9 J = i+M

FXTI{IK) = KE{I+d) * nl{deK)

FGkM (A - KE *x k) ESTIMATUR MATRIX

Do 6 I = 1N

D 6 J = 1N

Fllsdd = Alledd = EXTL(I 44}

[F (IOP «EWe 0) GO TO 329

PRINT FSTIMATUR MATRIX

1+10)

+ EXTLULWK)

% @ @ @ @ e W ¢ e s

6H
6H
oH
6H
6H
6H
oH
oH
oH
oH

{1P1l,
{(LPZ,
{1P35,
{1P4,
(1P5,
(i1ro,
(iP7,
(1P8,
(1PY,
{(1P10,

OHELZe4)
GHELZ o4
GHEL1Z2e4)
bHE1Z2+4) s
GHELZ24) »
6HEL Le4) s
OHEL1Z2+4)
OHE L4
O6HEL1Z %) s
6HE1Z+4%)



328

g EaEs!

isNeNel

331

502

2k

[alaNe!

503

[aRe)

WRITE (64435)
DO 501 Jd = 1.6
FMTUJd) = VFMTIN,J)

ARITE {6.FMT) ((F(Isd)d, J = L1LeNd, i = L.N)

NG 330 1 = 1N
DO 330 J = 1l.N
SINGIIsdd = FUIsJ)

CALL £SBG  (Ns SINGs N)

DETERMINE FIGENVALUES OF ESTIMATOR (A - KE % H)

IF {10P «EQ¢ U) GU TO 32&
WRITE (644175)
CALL EIGOR {(SINGe Ns RRs RIs 10P)

FLRM DISCRETE STATE TRANSITIGN MATRIX FCR ESTIMATOR (A = KE * )

CALL STM {F, PHEs GAMATs Ny KMAXE, TT, I0P)

FGRM AND PRINT THE INPUT VECTORS FUR THE ESTIMATOR

00 331 K 1.C
DO 331 1 leN
no 331 J loNN

GAMULT «K)
GAMZ (LK)
#RITE (6435)

ARITE {6+440)

DC 502 J = leo
FrT(J) = VFMT{C.Jd)

GAMAT(I +J3 * B(JsK) + GAMU(I,K)

o wouon

WRITE (6+FMT)  ({GAMULTJ)s J = 19Cdy I =
WRITE {(6+45)
WRITE (6+FMT) ((GAMZ(l+d)y J = 1+sC)s I =

FCRM DISCRETE STM FOR PLANT (A)

CALL STMm (Ay PHFe GAMAT, Ne KMAXP. LT, I0P)

GAMAT (I ed) * RELJK) + GAMZ (I K}

1.,N)

LeN)

FCRM AND PRINT THE INPUT VECTORS FUR THE PLANT

NG 332 K 1.C
ne 332 1 Lol
00 332 J Lowv

GAMB( [+K)
GAME{[.,K)
WRITE (6+35)

WRITE (64445)

NG 503 J = leo

FMT{J) = VFEMTI(C.J)

wWRITE (6+FMT) ((GAMB(I+J)» J
WRITE f(we4s)

WRITE {b.FMT) ({GAMU(]lesd) Jd = 1,0 [ =

GAMAT (I +d) * B(JdeK) + GAMB(I,K)
GAMAT (I »J) * U{JdeK) + GAMD(I,K)

1:C)y I =

1+N?

1eN)

DTAGONALIZE THE UISCKRETE STM FUR THE ESTIMATOR (A - KE * H)

CALL DIAG (PHEs GAMUS GAMZ, TCs PHIU., GAMUP,

1 EIGe CPRs CPIs CRe CIs Abs LwuVDse MuVDse RR,
2 EXT16s PERNs [PERNs IPERs DDe EDs Yo EXTZ2,

3 PERZNs IPERZ2s IPERZ2iy P2S5s P2y W2y 22+ WSLs

GAMZPy N,
RIy PPHID,
SDy EXy WSy

QP2

YDZ2

Cy N2

PHIP,
GRGy
10P)

AAA,
TT,
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%04

sNalel

319

505

[aNaNe]

405

410

506

411

705

s BN el

66

PRINT THE TRANSFORMED INPUT VECTORS FOR THE ESTIMATOR

WRITE (6,35)
WRITE {(64450)
DO 504 J4 = 146
FMTLJ) = VFMT(C.Jd)

WRITE (6+FMT) ((GAMUP(IvJddy J
WRITE (6+45)
WRITE (64FMT)

1+C)o I = 14N}

((GAMZP(L,d)y J LsCly I = 1sN)

FORM AND PRIENT THE TRANSFORMED CONTROL GAINS

no 319 K
Do 319 1 15C

Do 319 J4 1sN

KCPL{I+sK) = KC(I+J) * TD(JsK) + KCP(I,K)
WRITE (64455)

WRITE (6.311)

DO 505 J = 146

FMT(J) = VFMTIN.J)

WRITE {(6.FMT) {((KCPlJsl)s

LsN

itowow

I = 1eNd» Jd = 1+0)

FCRM AND PRINT THE CLOSED LUOP DISCRETE STM

DO 405 1sN
NO 405 laiN
1.C

BUKCL Tod
GBKC{ 1.4

GAMUP (I +K) * KCP(Ksd) + GUKC(IsJ)

J
I
DO 405 K
)
) GAMB(I+K) * KCP(KoJ) + GBKC(IL,J)

(I L

GZH{L+d) = GAMZP(I.K) * HiKsJd) + GZH{I, P
DO 410 1 = 14N

NO 410 J = 14N

PHBIG(I,d) = PHID(I,Jd) = GUKC(I,d)

K = [ +# N

PHBIGIKsd) = = GBKC(I,J)

L =J +N

PHBIG(I.L) = GZH{I.J)

PHBIG(KeL) = PHP(I,4)

If (I0P .EQe. 0) 60 TO 411

WRITE (6,+35)

WRITE (6+470)

DO 506 J = 1.6

FMTLJ) = VFMTI(N.J)

WRITE (6+FMT) ((PHBIG(Iadds J = LeNI)y I = 1,N2)
K=N+1

ARITE (6+FMT) ((PHBIGI{IsJdds J = KsN2)» I = 1,N2)
NO 705 [ = 1.N2

Do 705 J = 14N2

PHESBI(I,4) = PHBIG(I,J)

CALL HSBG (N2, PHESB, N2)

FGRM AND PRINT EIGENVALUES OF CLGSED LOOP DISCRETE STM

CALL EIGOR (PHESB,
WRITE (6435)

WRITE (64460)
WRITE (641002)

DO 415 [ = 1,N2
MAG2(I) = SORT(RRZ(I) % RR2(I) + RI2(I) * RI2(D))

N2+ RRZ2s RIZ2y O}
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[zBeRalel

321

447

o~ .~
3 C

420

10

OSSO

207

WRITE (0401003) &R2(1), RIZ(I)s MAGZ2(I)
CONT INUE

CHFCK STABILITY UF CLOSED LGOP SYSTEM
EXIT IF UNSTAGLE

N0 321 1 = 1.N2 )
Ie (MAGZ(I) «GTe letd GO TO 13

CONT ENUE
RO 12 LL = 1.C
NO 322 1 = 1M

Po6(I.1) = 0e0LLO
XS{Ie1) = 0.000
N1 I = leN2
EX181G(1l«1) = LaUDO
Fx2BlG(lel) = 0-0D0
XBIG(i.1) = Ce0DO
XNBIG(Is1) = Qe0UDO
N7 Jd = 1.2
GAMBIG(Isd) = UaULOU

THIS IS A UNIT STEP

7BIGLL+1) = 0.0DU
IRIG(2+1) = 14000

N6 8 I = 1N

GAMBIG(ie1) = GAMZP (I LL)
K =1 + N

GAMBIG{Ke2) = GAMD(I.JLL)

COMPUTE CLUSED LUOP. STEP RESPUNSE

ARITE (b43%)

DO L2 K = 1.+300

N0 9 I = 1.N2

D0 420 J = LeNZ

FX1B8IGUTIe1) = PHBIGUT+J) % XBIG(Ja1) + EX1IBIG{IW1)
N0 9 J = 1.2

EXZ2B1IG(Le1) = GAMBIGUL+d) % ZBIG(Jds 1) + EXZBIGII, 1)
NG 1a T = 1+N2

XNBTIGETe1) = EXInlG(lel) + EX2BIG(IL1)

XBIGLTo1) = XNBIG(Is1)

PRINT ESTIMATGR STATES

ARITE (6+44£5)

Do %07 J = 1.0

FMTI(J) = VEMT(N.J)

WRITE (6¢eFMT) (XNBIG{I+1)s I = 14N)

NG 425 TI = 1M

D0 425 J = 1N

Jdd = J + N

PO6LITe1) = H{lTed) * XNBIG{JJe1) + P56 {1141)
XS{iTa1) = CCOLT+4) * XNSIGLJJIL) + XSCUII1)

PRINT PLANT OUTKFUT RESPONSES
WRITE (644302

WKk1ITE (6+513) (PO 6(1+12 XS(1el), [ = 1«M)
NO 324 I = 1.M
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374

11
12
35
45
1312

1603
311
318
430
435
440
LG4y
450
45h
460
465
410
475

13

Poe(lel)
XS(Iel)

NG o1

EXIBIG(Is1)
FX28IG{TI,1)

= Qe

= 1o

XNBIG({is1) =

CONT INUE

FORMAT
FORMAT
FURMAT

{(1Hl)
(110D
(ix /

JLa

0« U0U

N2
0000
VeuDU

G000

LOXs 10H REAL PARTs L1O0XK» 11lH IMAG. PART, 10X,

1 10+ MAGNITUDE)

FORMAT
FORMAT
FOERMAT
FCRMAT
FORMAT
FORMAT
FORMAT
FOKMAT
FLKMAT
FORMAT
FURMAT
FCRMAT
FURMAT

(88X
(HIXe
{1X,
{lax.,
{1Xs
[ 1X.
(1Xe
{1X,
{1X,
{LX,
{1Xs
{1x,
(1X,

CONT INGE-

STOP
FND

Elaele OXe Eldelys 00Xy ElédeT)

3RKLP)

1P2E20e0)

3HP96y 1lBXe 2HXS)

lobESTIMATUR MATRIX)
SLHINPUT VECTOKRS FUOR THE ESTIMATCR)
ZIHINPUT VECTURS FUR THE PLANT)
43NTHKANSFORMED INPUT VECTORS FOR THE ESTIMATOR)
ZOhTRANSFURMED CONTROL GAINS)
39HE IGENVALUES OF CLOSED LCUP DISCRETE STM)
2Z2HESTIMATUR STATE VECTOR)?

24rCLUGSED LuGP DISCRETE STM)

24HE IGENVALUES OF ESTIMATOR)
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aSasNelaNeEslelasNelaNalaNalaleleleleleie]

aNaNalelel

!

100

[ i)

-~
o~

el ale!

SUBROUTINE STM (+e PHI» GAMAT. Ny KMAXs DT [0OP)

o e e o o 3 ok ook 36 o 3% Yool o Kt o ok 3 o ok e ook S e 3tk X ok ok ok ok R R ek bk e e e ek ok ok o ok ok ok R R 3 %

STM CCMPUTES ThE STATE TRANSITICHW mATRIX PHI = EXP{ F % 0T )
USINL A WESTED PCOLYNOMIAL EVALUATIUN UOF THE SERIE> REPRESENTATIUON.

Pl IS THE QUTPUT SeTeMes GAMAT IS THE CUTPUT MATRIX FUR CuM-~-
PUTING THE VECTORS GAMMA, F IS THE INPUT MATRIX. N IS THE SIZE
il THE MATRIX» KMAX IS THE NUMBER UF TERMS IN THE SeTeMs SEKIES,
AN CT IS THE SAMPLING TIME.

STM CALLS NO SUBROUTINES.

e e Moo ko Aok 3 A o ok e e ok % ok KRRk e A ok R A % Kok ok X % Bk K e e 3 Xk kX ol ok R XAl R A K X e X Xl R kR

DIVENSION UF INPUT VARIABLES

FINON)

DIMENSICON CF GUTPUT VAKIABLES

PHI(NWN)

GAMATINSN)

nouBLE PRECISION Fo PHIs GAMAT, UTy Xo Y
DIMENSION FINeN)s PHL{N«N)y GAMAT{N,N)
COMMON 7/ FORM / VFMT(10+06) s FMT(6)

NN IS THE UNDERFLOW CCUNTEKR
&N = 0
INITIAL GAMAT IS I * OT

no 100 1 lebv

N 100 4 LaN

GAMAT(I+J) = UeGDU

IF (1 «Fue Jd GAMAT(1yd) = DT
CONTINUF

RNFMAX] = KMAX - 1

SERIFS CALCULATIGN OF GAMAT

06 400 L = l.xkMAaXl

X = KMAX = L + 1
X = LT /7 X

) 300 I = l.N
N0 300 J = 1leN

PHI(IJ) = 0.000
PHI IS USED AS TEMPORARY STOKAGE FOR THE CALCULATION OF GAMAT

N 200 K = 1.N
¥ = FLI.K) * GAMATI(K,J) * X

THE FOLLOWING FOUR STATEMENTS TEST FUR UNDERFLCOW CONDITIONS.

IF (Y «EQe 0.0D0) GO TO <200
IF (ABSIY) euTe 1leUD=25) GU TG 200
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2430

300

40C

oW aBel alieal

20U

6ug

laRe

700

bu8

720

509

800

Y = 00Ul

NN = NN+ 1

pHI(['J) = PH!(‘QJ) + Y

IF (1 «EQe J) PHIlILJ) = PHI(Isd) + DT
CUNT TNUE

G 430 1 LeN

NG 404y J 1eN

GAMAT Tled) = PHI(IJ)

[ ]

UPCN CCMPLETICN GF ThE L DO LOOPs GAMAT CONTAINS THE DESIRED
RESULT. THE KEMAINDER GF THE SUBROUTINE COMPUTES PHI BY MULTI-

PLYING GAMAT BY F AND ADDING THE IDENTITY MATRIX.

na 664 I = 1N
DO 600 J = 1l
G 590 K = 1N

Y = FULI«K) % GAMAT(K.J)

I[F (Y «EWUe ULUNOG) GO TL 5Suu

TF (ABS(Y) «LTe LeUb=25) GO TO 500

¥ = .0D0

NN = NN + 1

PHI(T.d) = PHI(IW4) + Y

IF (1 oFQe Jd) PRHI{IJ) = PRI{I,d) ¢+ 10DO
CONT INUF

IF (I0OF «FQe 0) 60 TO sOU

PRINT ODUTPUT RESULTS

WKITE (64700) ok

FUGRMAT (131X / IXe L3HUNDERFLUWS
00 »ud J = 16

FMT(J) = VFMT{N.J)

ARITEF (0eFMT)  ((PHI{I«dde J = Lland, [ = L.N)
WRITE (b.720)

FCRMAT (19Xs SHGAMAT)

M) 5058 J = ls+6

FMT(J) = VFMTINJ)

WRITE {bsFMT) ({GAMAT (I 4J2, J = LoelN)y I = 1l.N)
CONTINUE

RETURN

END

o 15 /7 19X 3HPHI)

]



SIRFTC LIAG LIST

s EeEeEniaiesinialninEsEsisiaksisEnEnEsiealslaelesEasNoNeNalaNalsNeNeRalaNaRelaleRaleNa el sSe el o e NakeNelaNallie!

SUBRUUTINE  DBIAG (PHI. GAMLy GAMce TOs PHIDs V1 Veo Ny CoNZy AAA,
I E1Gs CPRe CPle CRe Ll Abe LwnVide Mavue RRy RIy PPHID, PHIP, TT,
7 EXTlbe PERNe IPERNe IPERS Lis Do Ye EXTZ2e SDe Xeo wSs LGOWs PERZ2Ns
3 IPFR2e IPERZiNe P2ZSys Fls Wee 220 G3is JF2s YD2y 1UP)

e o o o o 3 o 4 e e e ook ok Stk o R ok e A ook i el ok o sk s 3ok ok oK o ko o ok ok sk sk sl ook ok 3ol e A ok e Bk ok ok

D{AG COMPUTES THE BLGCKR LIAGUNAL FURM (PHID) CF THE MATRIX PHI.
IT ALSO FINDS THE TRANSFUKMED VERSIGNS ( V1 AND Ve ) GF TwU

{NPUT MATRICES ( GAMLl AND GAMZ KESPECTIVELY )e THL TRANSFORMATION
MATRIX TD IS ALSU FCUNDe

DITAG CALLS SUBKGUTINES HSBuUs ELIGVECs EIGUK, AND DMINV.
2 o e e e e e e e e e R A R e G X o o o ok X s e R R e e ook e e R ok o ol e e ke ot ok o o ke ok o

DIFMENSION OF INPUT VAKIABLES CF LIST
PHLI(NN)
GAMLIN.()
GANZINGC)
DIMENSION OF GUTPUT VARIALBLES U#F LIST
TCliveN)
PEID(NIN)
Viin.C)
VZ2ihaC)
DIMENSTUN UF INTERNAL VAKIABLES
TTINSN)

RR (V)
RI(N)
CRIND
CLIND
AH{NSN)
LiwVvDiN)
MV IN)
PPHIDINWN?
PHIPIN.N)
ALAINGN)
CPRIN)D
CPLIN)
FIGINSNG?)
FXTI6{NND
LB INN)
D{N+NI
WECIN. 1)
QSN 1)
SG{Ne 1)
Y{N+1)
X{Ne1)
PERNIN)
IPFRIN{N)
[PFR{N)
FXT2(/2Ne2N)
PLS(2N2N)
P2{2NeciN)
RWSL{2N.1)
WP2LZ2Ne 1)
YD2(2Me 1)
WE(2N+ 1)
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72

sEaBalel

1

W W N -

oon

i69

170

-~ oo

L71

280

25!

4 31)
1
7’

7202ins 1)

PERZN( 2N
TPFRZN(ZN)

IPERZ2(2N)

INTEGER G

NGUBLF PRECISION  FPHIs GAMly GAMZe TOy PHIDy V1e VZ2y PHIPy, PPHID,
1T DET

DIMENSICN PHI(NsN) e GAML(NSCIe GAMZ{N.C)

DIMENSTON  TOIWNeNde PHIDINeN)s VLI{N,L)s V2IN,C)

DIMENSTUGN  RR{N)e RI(N)y CR(ND)e CI(IN) e AH(N«N)s LWVO{N)s MWVO{N),
PPHIDINGN)y PRHIP{N,N)s ARBA{(NINIs CPRIN)y CPIIN)s EIG{NiNs2Z),
EXT16(NeN)y DDINsNIy Dflidende RWUO{Ns1)y USINeL)y SD{Nelds YINs1),
K{Nel)y PERNINIs ITPERN{N)s LPER(N), EXT2(NZsN2Ys» P25{N2sN2)»
P2IN2eNZ) s USLINZe i)y UPZ2INZs1)e YDU2UINZ291)s W2(N2e1l) sy Z2(N2s1)
PERZNINZ) s [PERZNINZ) s TPERKZ2INZ) s TT{NN)I

COMMON / FORM / vEMTL10.0)s FMT{6)

DO 170 1 = 1N

CPR{UT) = Q.0
CPiii) = 0.0

e 169 K = 1.0
VI{I.K) = G000
V2(I+K) = Ge0DOQ
nag o170 } = 1eN
PEIDIT.4d) = (0.0D0

AAA(T d) = PHI(T )
An({ed) = PHI(I+d)
CALL HSBGIN, aAHe N)

DFTERMINE EIGENVALUES OF PHI MATRIX

IF (I0OP «EQe U) G TO 171
WRITFE {64438)

CALL EIGuWwk {AHs Ne CRs CI,y T0UP)
NG 2949 [T = 1N

CPRITT) = CRUID)
CPI(IT)Y = CI(ID)
CONTINUE

. =1

PHINDILLLY = CPRIL)
L =L + 1

IF (L 6T« NJ) GO TO 430
I+ (CPLIL-1) «EU. U0) GG TU 5
PRIviL.L) = LPRIL-1)

PHID(L=1.L) = = CPI(L-1)
PHID{L.L~12 = LPILIL-1)
o= L + 1

IF (L «GTe N) GU TO 430
Gu TO 5

FURM FIGENVECTOKS

CALL EIGVEC (AAAs PRy CPly EIGe Ny 1I0Ps N2y EXT1Gs PERN, IPERN,
IPERs DUes Do WSy GLWWUe Yo SUs Xe EXTZe PERZNs TPERZNs IPERZy P2Sy
P2e BS1s Q2 WPZy YD2s 12)

NO 435 I = 1l.N

NG 435 U = 1N

TR(1ed) = EIGULeds1l) # ELG{]ede2)



445

[T al e

446

450
43€
437
438
439
44{)

1

Ab(1.4) PRID(1L+J)

TT(Ied) TD(led?

IF (I0P «EQe U) GU T 445

ARITE (6+436)

30 810 J4 = 1e06

FMTLJ) = VFMTINLJ)

WRITE (6. FMT) ((PHID(I+J), J = 1+N)y I = 1+N)
CALL HSBG (Ne AHe M)

WoH

DETERMINE FIGENVALUES OF PHIV MATRIX

IF (TUFP +EQe 0 GO TU 440

ARITE (64439)

Call EFIGOR (AHs No KR RIs 10P)
CALL CMINV {TTs Ns DETe LWVDe MwvD)
I (DET <FQe« 0.0DMN WRITE (6e440)
NN 4%0 K 1.C

0 450 1 1eN

00 459 J 1eN

V1{(1.K) TTAIedd * GAMLA(JsR) + VLI(I.K)
v2{leK) TTUled) * GAMZ{JeK) + V2{I14K)
FLRMAT {(18Xe 4aHPHID)

FCRMAT {1Xe 4P1lOEL1345)

FORMAT  (1Xe 2Z25HEIGENVALUES UOF PHI MATRIX)
FORMAT  (1Xs 20HEIGENVALUES OF PHID MATRIX)

FCRMAT  (1Xe 62FDET = 0.0 AND BLUCK DIAGUNAL TRANSFORMAT [UN MATRIX

IS SINGULAR )
KETURN
FND

73
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S$IBFTC EIGOR LIST

OSSN NN D

s elel

SUBROUTINE EIGOR (A, Ms RUOOTks, RUOTI,s IPRNT)

e X 2 30 3 o e AR A e e Ak o A A ek e g e 2 e e vk e e e A ok sl Ak e s ol e ok o e e o ek e ale ko e e ok afe dfe ke o o ok ol ol 3k e ek aleok ok

EIGUR DETERMINES THE EIGENVALUES CF A REAL MATRIX (A) USING
FRANCIS QR ALGUKITHM. MAXIMUM NUMBER OF ITERATIONS IN THE
JR PROCESS IS 50« [IF IPRNT IS5 NOT ZERD» THE EIGENVALUES
witlL BE PRINTED OUT.

3 o e 2 e e o ko o o Ao ok o e e s o ook o e sl e ok o o o ke o o ok ok ok R Kok ok ok Ak kR Rk ok &

80
81

171

17
13
82
83

14
12

16
31

32

43

15

VARIABLES OF LIST

A(M.M) INPUT MATRIX
ROGTRIM. 1) REAL PART OF EIGENVALUES
ROCTI(M. 1) IMAGINARY PART OF EIGENVALUES

DIMENSION  A(MeM) e ROCTRIM)» RUOTI(M), PSI1(2), GRI3)

N = M
Nno 2 I = 1e
ROODTRII) = 0.0
ROOTILI) = 040
IF (IPRNT) BU.8l.80
WRITE (6.104)

N

7ERDO = 0.0
iJ = 1
ANN = Q0.0
XN2 = 0.0
AA = (0.0
B = 0.0

C = 0.0
0 = U0
R = 0.0
SIC = 0.0
[TER = 0O

[F (N~ 2) 13+s14012

IF (IPRNT) ©2.83.82

ARITE (6,105) A(l,1)

ROOTRAL) = A(l,1)

ROCTI(1) = D0

RETURN

Jb = = 1

X = (A(N=1eN=1) =~ A(NNI) *x 2

5 = 440 % A{NeN=1) * A(N=-1,N)

ITER = ITER + 1

KF ‘X oFWe el .DR. ABS(S / X) .GT. loOE‘B’ GO TO 15
fr (AGSCA(N=LeN~1)) = ABS(A(NNI)) 32+32+31

F = A{N=1sN=-1)
G = A(NGN)

60 TC 33

G = A(N=LeN~-1)
F = A(NN)

F = (00

H = (0

GO TO 24

5 =X + 8§



19

21

22

18

724
10

28
84

85

26
29
86
81

50

63

lo4

165

leé

64
b6
88

61
89

700

701

51
53

L]

X A(N-1sN=-1) + A(N.N)
IF (S) 18.19,19
S4d = SURT(S)

F = 0«0

H = 0.0

IF (X)) 21.21+22

F = (X = SQ) / 2.0
G = IX + 5Q) / 200

GO 70 24
(X = 5Q) / 260
(X + SWQ) / 2.0

D

W u

GO T0 24

£ = SORT( - 5) /7 2.0
F =X [/ 2.0

G = E

H = =- F

I (JJd) 28470.,70

1 = 1«0E~-10 % {(ABS{(G) + F)

IF (ABS(A(N=1¢N=2)) oGT. D) GO TO 26
If (IPRNT) GH4v85.84

wRITE (6+105) Es Fs ITER

WRITE (6.105) Gos H

ROOTR(IN)
KOOTL{N)Y =
ROOGTRIN-1)
ROGTI(N=-1)
N =N- 2
IF (43) 141775171

IF (ABSIAINsN=12) +GTe LeOE~10 % ABS{A{NsNI)) GO TO 50
IF {(IPRNT) 8698786

WRITE (6,105) A(NsN)s» ZEKOs ITEK

ROOTRIN) = A{N.N)

ROOUTIIN) = 0.0

N =N-1

GO 10 177

[F (ABS(ABSUXNN /7 A(NWN=1)) = 1e0) = LeUE=6) 63¢634+62

IF (ABSCABS(XNZ /7 A(N=LeN=2)) = 1laU) = leUF=6) 03sb3,700
VO = ABS{A(NJN=1)) ~ ABS{A{N=1sN=~2))

IF (ITFR = 15) 53,184,004

IF {(VQ) 165.16541866

R = A{N—1sN=2) %% 2

SIG = 240 % AlIN=]1N=2)

GG 10 60

R = A(NeN=1) %% 2

SIG = 2.0 * A{NJN-1)

GO TO 6uU

IF (VQ) 6748740606

IFf {IPRNT) 88,85.,88

WRITE 16+107) AIN=1.N-2)

60 TO 84

[F {IPRNT) 89.87.89

WRITE (641072 A(NJN-1)

GG TN 86

iF (ITER «6GTe 50) GO TO 063

IF LITER «GTs 5 GO T0 53

1 = {(E - AA) %% 2 + (F -~ B) %% 2) / (E * E + F % F)

72 = {{ — C) %% 2 + (H = DL) %% 2) / (GC % G + H % H)

IF (71 = +25) 51451452

IF {2 = «25) 53.53454

R =F % 5 - F % H

Whmm

6
H

75



76

54

54

55

601

6C

261

212
210

214
213

217

/18
219
222
223

2724

225
226
27238

225G
221

SIG = F + 6

GO TO 60

R = F % F

SIG = E + E

GO TO €0

IFf {712 = «25) 55+,55,6C1
R =6 %6

SI6 = 6 + 6

60 10 60

R = 0.0

SIG = 0.0

XN = A{NeN=1)
XiN2 = A(N=1eN=2)
Nl = N - ]

A= N- 2

iPp = 1A

IF (N - 3) 201,210,260

DO 212 J = 3.N1

d4l = N -

IF (ABS{A(J1+1sd1)) = D) 2102104211

DEN = Aldi+ledl+1l) * (Aldl+ledl+l) = SIGY + Aldltiedl+2) *
1 A{JLl+#2.41+1) + R

IF (LEN) 2061:212+261

TF (ABSLACJLI+1.d1) % A(JL+2,41+1) * (ABS{A(J1l+1,J1+1) +
1 A{Jl+2,01+2) = SIG)Y + ABS{A{JL+3.,d1%2))) / DENI ~ D) 2104210+212
P = Jl

D0 214 J = 1.1P

J1 = P~ Jd + 1

IF (ABS(A(JL+L=d1)) = D) 2134213+214

iQ = Jl

NO 200 1 = IPsN1

IF (1 = IP) 2162154218

GRE1) = ALIPLIP)Y % [ALIPIP) — SIG) + ALIP,IP+1) % A(IP+1,IP) + R
GR{2) = ACIP+14IP) % (A(LIPIP) + AULIP+L,IP+1) - SIG)

GR{3) = A(IP+1.1P) * ALIP+2.1P+1)

ALIP+2,1IP) = (0

GG TO 216

GR{1) = A(l.I-1)

GRI2) = A(TI+1,1-1)

IF (1 = IA) 21721174218

GR{3) = A{I+2.1-1)

GO TO 219

BR{3) = 0.0

AK = SIGN(SWRTIGR{L) ** 2 + GR{Z2) *% 2 + GR(3) ** 2), GR{1))
IF (XK) 223,224¢225

AL = GR{1) /7 XK + 1.0

PS{(1d = GRUZ2)Y /7 (GR{1) + XK)

PSI(2) = GR(3) /7 (GR{1) + XK)

G TO 225
AL = 20
PSI(1) = 0.0

PSI{2) = D0

IF (1 = LW) 226+227+22¢6
TF (I = 1IP) 22942284229
All+1-1) = - A{ls1I=-1)

GO 10 2727

Af{l+1I~1) = = XK

) 230 J = TN

IF (I — TA) Z231+431e232
CR = PSI(2) * A(I+2,4)



23z
233

234
230

235

236
231

238

239
241

242
240

7243

200
201

104

105
107

GO TO 233

CR
FR

0«0

o

AllsJ) = A{l.J) - ER

AlLI+1.4)
F (i~
A(I+2.J)
CONTINUE
IF (I -
L =1+
GO TO 23
L =N

N0 240

IF (i -

GO TO 24
CR Uel
ER

(]

= A(
ia)
= Al

fa)
2
7

b =1

14)

1

I+1. 42

[+2+4)

- PSI(1) * ER
23492344230
- PST1{2) * ER

235,235,236

Qol

238¢2384¢259
CR = PSi{2) * Ald.I+2)

Aldsl) = Afldel) - ER

AldeI+ D)
IiF (1 -
Aldel+2)
CONT INUE

IF (I = N + 3)

= A
TA)
= Al

Jed+l)

e fI+2)

- PSI{(1) * ER
2420242+ 240
- PSI(2) * ER

243+2434+200

ER = AL % PSI{2) % A(1+3,1+2)

AL * (Al{ledd + PSI(1) * A(I+1.,J) + CR)

Al % (A(JeId + PSI(L) * AlJdsI+1l) + CR)

- PSI(2) * ER

4H1ITER
Elbeds

AlT+3,.,1I) = - EK

AlI+3,1+1) = - PSIEL)Y % EK
A{I+3.,142) = A(I+3,]+2)
CONTINUE

AA = E

R = F

C =6

J0 = H

60 T0 12

FURMAT (///7/1Xe 9HREAL PAKT.,
1 13RTAKEN AS ZEROe 6X»
FURMAT (lxe El5e8s 3Xo
FORMAT (%6Xy El3eB)

END

&Xs L4HIMAGINARY PART.

/7))
42Xy

13)

26Xy

77
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$IRBFTC FIGVEC LIST

A M A MO AAM NSO AN DA OO ANO AN OO0 N

OO,

SUBROUTINE EIGVEC (AAA, CPR. CPI. EIGs N» I0PZsy N2y EXT1l6s PERN,
1 IPERNe. IPERs DUs Do €S» 0QUs Ys SDe Xy EXT2s. PERZNy IPERZN,
2 IPER2s P2S+ PZ2s QS1y Q2 WPZs YD2s 22}

%0 A e 3 A% o o Ak o6 3o 3 e X6 e ok e e e e e ek e e ek e ok e 3 3 g e o ok Xk o ol el de ke oo ok e e e ok kool kool e e kok

FIGVEC DETERMINES THE EIGENVECTORS UF A REAL MATRIX (AAA),
GIVEN THE REAL AND IMAGINARY PARTS GF THE EIGENVALUES OF (AAA),
PR AND CPl., KESPECTIVELY. THE TECHNIWUE USED IS THE VAN NESS
INVERSE ITERATION METHOD. EIGENVECTORS ARE STORED IN A TRIPLE
SUBSCRIPTED ARKAY (EIG). THE REAL PARTS ARE STORED COLUMNWISE
IN EIG(Isdelds AND THE IMAGINARY PARTS IN EIG(I.Jds2)e IF I0PZ
IS NOT 7ZERO, THE EIGENVECTORS ARE PRINTED OuUTe.

FIGVFC CALLS SUBROUTINES FACTRe PERM, AND GMPRD.

3¢ % ok 3 R e o 3 ok e ek e 3k kol e ok 3k ok ek ok ekl ok e de o e e ok e e sfe o ok ok sk kot e sk Aok ofe e o e e Al Kok e R R ek K

DIMFNSICN OF INPUT VARIABLES CF LIST
ALA{NN)

CPRIN)

CPI{N)

DIMENSION UF QUTPUT VARIABLE CF LIST
EIGINN.2)

DIMENSION OF INTERNAL VARIABLES
EXTL6(NsNI

PERNIN)

IPERNIN)

IPER(N)

DCINN)

USiNs 1)

LULIN, 1)

Y{Nel)

SDIN. 1)

X{Ns 1)

EXT2{2N:2N)

P2SI2ZN.2N)

P2(2N+2N)

WSL{(2N.1)

WP2(2N.1)

YDZ{ 2N 1)

Q2(2N, 1D

72(2Ns 1)

PERZN(2N)

IPERZN(ZN)

[PFR2(2N)

DIMENSIGN AR2AINWNIe CPRINI» CPI(N)

DIMENSIUN EIGINsNe2Z)

DIMENSION EXT16(Nein)s UDDINWINIe D(NINIe YIN21)y SD{Ns 1)y

1 X{Nel)e YD2(N2+1ds Z2(N2el)s PL2IN2NZD)s GSLINZsl)y QP2(N2y1),
2 PERNIN)Ie IPERN(N)s IPERIN)s OSIN,1)s QLO(NsLIIs Q2(NZs1),

3 EXT2(NZ+NZ)y PERZNINZ) s IPERZNINZ2) s IPERZ2(N2)y PZLS(NZsN2)



310

315
31¢

313

311
312

317

319

320

325

335

347

L =1

IF (L «GT« N ) 60 TO 430

TFE (CPI{L) oNEs (20) GE TO 360

CALCULATE REAL EIGENVECTOR

N0 315 1 LeN

N0 315 J LeN

FXT16([.0) = 84A(Ted)

IF {1 <EQe J) EXTI6(Iled) = EXTLO(I +4) - CPR(L)
CONT INUE

CALL FACTR (EXT16s PERNs N o N o [ER)
3 313 1 = 1N

IPERNACI) = PERN(I)

CALL PERM {IPERNs IPERsy N o+ IERP)

IF (IERP oFQs 0) 6O To 312

WRITE (6.311)

FURMAT (1R0. 1SHPERN CANNUT BE DUNE)
CUNT INUF

ITF (IER «NFe 3) GO TO 3519

WRITE (6:317)

FORMAT  (1HO. 14HFACTR IS wWRUNG)

N0 318 [ = 1N

NG 348 J = 1l.N

IF (EXT16(1s.4) <ELs 0e0) EXT16(1.4)

CONT INUF

o5 f {240 %% 3H)

GO TO 216

00 320 1 = 1leN
N0 320 4 = 1N
UDLI+d) = 0s0

D{Isd) = 00

IF (1 EQe J4) DD(I,Jd) = 1.0

CONT INUE

DO 329 1 = 1leN

[TIPEK = IPER(I)

DO 325 4 = leN

D(led) = DDUIIPEKJ)

CUNT INUE

N 340 I = leN

IF (EXTLO6LI+41) oNEe QO LU TO 340
AMAX = ABS{EXTlo(I+1})

DO 335 J = leN

IF (ABS(EXTLle(is+d)) «GTs AMAX) AMAX
CONT INUE

IF (AMAX oEQe 020) AMAX = leC
EXTi6(1.1) = -5 * AMAX / (2.0 %% 35)

ABS(EXT16(1-42)

CCNTINUF

DO 345 [ = 1N

QS{Is1) = 1.0

QUELIs1) = @StI. 1)

JQIEND = O

CALL GMPRD (Ds QUEY Yo N o N o 1)
$D{1.1) = Y(1l. 1)

Nno 341 I = ZN

SOEIs 1) = YL 1)

M=1=1

NO 347 4 = 1M

SD(L+1) = SDUIs1) = EXTlolleJd) * SD{Js1)
XIN +1) = SDIN +1) / EXTLO(N N )

N0 349 1 = 2N
J=N~-1+1
X(Je1) = SOD(JW1)

79



80

248
349

350

351

352

353

395

356

357

359

360

454

364

365
I6E

363

M = Jg + 1
N0 348 K = MeN

X{del) = X{Jeld = X(Kel) * EXTLO(J,K)
K{Jda1) = X{Jol) / EXTlOlJsd)
17 =1

7MAX = ASS{X(L+12)

DA 350 I = ZalN

7INT = ABSIX{I.1))

IF (LINT oLEe ZMAX) GO TG 350
7MAX = ZINT

I = 1

CONT INUE

IMAX = 140 / X{IZ.1)

NG 351 1 = 1.N

VUCIT 1) = X(Iel) * ZMAX
i = 0

NG 355 1 = 1N

It {ABSIOQUETIel)) oGTe 1leCE~10) GJ TO 352

VORI 1) = 00
GG TO 353
OIF = ApS{0S(I.1) - QUUII,1))

IF (DIF «GTs 001 * AbS{oeR(il.123) GC TO 355

e =10 + 1

CUNTINUFE

IF (IC -FQe N ) GO TO 420
JUIEND = JQL1END + 1

ir (JUlEND +ELe 202 GO TO 358
NO 356 I = 1l.N

US{I-1) = LOGLT,1)

TE (JOIEND «LT. 30) GO TO s40
WwRITE(wea57) CPRLD

FORMAT  (1Xe. 29HSTUCK IN LOOP wHERE CPRAL) =

128-AND ANSWERS MAY NJdT BE RIGHT)

GO TO 420

D0 359 1 = 1N

Gl el) = (QGGLWIT1) + QS(Ls1)) / 2.0
WS{I+1) = COQ(L.1)

GO TO 346

CALCULATE COMPLEX EIGENVECTOR
DY 354 I = 1N

DO 354 J = laN
FXT16(1.d) = AAA{TL+Jd)
DO %364 1 = l.N2

NO 3864 ) = deNZ
EFXT2{1ed) = U0

DO 365 1 = leN

N0 365 4 = 1leN

K = +# N

Jdd = J + N

FxT2{l+d) = EXTi6{I+4)

FXT2{Kedd) = EXT1OH(L )

IF {1 oFWe J) FEXT2{(Ked) = = CPI(L)
IF (I oEQe Jd EXTZ2(IL+d4d) = CPI(L)

IF {1 «FEQe 4) EXTZ2(I,d) = EXTLi6(1,4)
IF (I oFide J) EXTZ2{Kedd)d) = EXTLO(I,J)
CURTINUF

CALL FACTR (EXTz+ PEKZN, N2y N2o [ER)
O 363 [ = 1eiN2

TPERZNIL) = PERZNALI)

CALL PERM (IPEKZN, IPERcze NZ2o IERP)

- CPR{L)
- CPR(LI

1PEl4e6,



{F (IFRP +EQe 0O) GO TO 362

ARTTF {6+361)
461 FGRMAT (1HOs 20HPERZN CANNUT BE DUNE)
362 CUNTINUF

IF (IER «NE. 3) GUL TO 304

WRITE (€4357)
367 FORMAT  (1IHO. 16BHFACTR 2 IS wWRLUNG)

DO 368 1 = 1l.N2

N0 368 J = 1eN2

IF (EXT2(1sd) sEtis 0eU) EXT2(lyJd) = =5 / {20 *% 35)
368 CONTINUE

LO TO 366
365 0 370 I = leNZ
Do 470 Jd = 1.N2

P2S{Ted) = 0.0

P2{led) = Qa0

IF (I oFQe Jd) #2S5(1+d) = 1.0
370 CONTINUE

00 375 1 = 1.N2
TIPFR = IPERZ(I)
30 375 J = 1.N2
P24I+d) = P2S(lIPEKR,.J)

375 CONTINUE
DO 390 [ = 1leN2
IF (FEXT2{1+1) oNEe Ue0) GU TO 390
AMAX = ABS(EXT2{(1,1))
DO 385 J = [«N2
IF {ABS(EXT2{1+4)) oGTs AMAX) AMAX = ABS(EXT2(1+43)
385 CUNTINUF
iF (AMAX «FQs Ued) AMAX = 140
EXT2{T412 = a5 % AMAX / (20 *% 35)
390 CUNT INUE
a0 395 I = 1.2
QS140+1) = 1.0
365 Q24T+41) = QS1(I,1)
JG2END = @
396 CALL GMPRD (P2s L2y WP2s N2» N2+ 1)
YU241l+1) = WQP2(1.1)
DG 497 T = Z.N2
YD2{1«1) = QP2{1.1)
M=1 -1
30 3917 J = 1M
397 ¥YD201e1) = YD2{1eld) —~ EXTZL(1s4) % YD2{Jsl)
172{N2+1) = YD2{N2+s1) [/ EXT2(iN2sN2}
JG 399 [ = ZoN2
J=N2=- 1+ 1

72{.J,1) YD2{d+1)
M= J +
D 398 = MJNZ

398 721d.1)
399 212(4-1)

224d+1) = 221K+ 1) % EXTZ2{4:K)
72{d+1) / EXT2(J.d)

I (S N

7MAX = 7201+ 1) % Z2{1s1) + Z2(ds1) x 22{(J,l)
NG 400 [ = 2N

=1+ N

JINT = 72201210 % J2(141) + 720ds1) % 221(Js1)
I[F (ZINT «LEs IMAX) GU TG 4«00

/7MAX = [JINT

IMax = |
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400

401

402

403
405

40¢

407

408

409

410

413

44
435

CLRTINUE

JMAX = IMAX + N
JMAX = SQRT(IMAX)
N0 401 I = LeN

J =1 %N

Q2{L+1) = (Z22(1.1) / IMAX) * (Z2(IMAXs1) / ZIMAX) + (Z22(J-1) /

1 ZMAX) * (Z2(JMAXs1) [/ ZMAX)

W2{deld = ~ {Z2(Ts1) / ZMAX) ¥ (Z2(0JMAXe1) /7 ZMAX) ¢ {(Z2(J»1) [/
1 ZMAX) * (Z2(IMAX.1) / ZMax)

CLNTINUE

90 =0

DL 405 I = LeNZ

IF (ABS(Q241+1)) oGTe 1e0E-1U) GU Tu 402
WZ2(lel) = 00

GO Tu 403

DIF = ABS(RSi{l«1) = Q2(1,+1))

IF (DIF «GTe 001 ¥ ABS{OZ{I»122) GO TC 405
I = I0 + 1

CONTINUF

IF {1J «EQ. NZ2) GL TC 410

JOZ2END = JU2END + 1

[F (JQ2END eEWe 20) GC TU 408

N0 4Co I = 1.N2

WS1I{1e41) = Q2(1,1)

IF {JOZEND -LTe. 302 GO TO 396

ARITE(G6+4017) CPKILY)y CPILL)

FORMAT  (1Xe 29HSTUCK IN LOUOP WHERE CPRAL) = o 1PEL4+6»
1 130ANE CPILL) = o LPEL4.6
228FAND ANSWERS MayY NOT BE RIGHT)H

GG TO 410

N0 469 1T = 1+N2

RQ2€(I+1) = (02(I+1) + CS1{([.1)) / 2.0
QS‘(‘QI) = Q2{(11)

GU TO 396

CONTINUE

L. 0AD EIGENVECTUR MATRIX wITH COMPLEX EIGENVECTUR PAIR
NO 413 1 = 1l

=1 + N

FIG(TsLel) = Q211.1)

FIGITI L#+141) = G2(1.1)

FIGITsLe2) = W20del)

FIG(I sL+la2) = = Q2(Jsi)

L =L % 2

60 TO 310

END CF COMPLEX EBELIGENVECTUR CALCULATICN
LOAD FIGENVECTOR MATRIX wlTH KEAL EIGENVECTOK
00 425 I = LeN

FIGIIsLa1l) = QUQLI.1)

FIG{IsLe2) = 0.0

COGNT INUE

L =L + 1

600 TO 310

PRINT OUT EIGENVECTOR MATRIX

Lk =1

LiLL = N

IF (N oGT. 10) LLL = 10

{F {IUP2 oFWUs 0) 6O TO 467

AKITE {6+440)

FORMAT (1HL / 20Xs L12HEIGENVECTURS 7/)
nag 455 I = 1N



WRITE (6+445) (EIG{ILsLs1)s L = LLsLLL)
445 FURMAT  (1Xs 1P10ELlZ2e4)
WRITE (64450) (EIG(L.Ls20s L = LiLsiLL)

450 FORMAT (5Xe 1P10EL2.4)
455 CGUNTINUE
WRITE (6+465)
465 FCORMAT  (1H1)
467 TF {LLL ECe N ) GO TO 460
LL = 11
Lel = N
GO TO 435
460 CUNTINUE

RETURN
FND
$TRFTC PERM LIST
SUBROUTINE PERMUIPL. IP2+ e TERD
C
et oo e o i e o ok ko o e kol o 0 A o o o ok ok o o o o ok o e ol R ook ok 46 koo ok ko R ok ok ok oK ok Kk s K
G
C COMPUTFE PERMUTATIOGN VECTUk [P2 FUOR TRANSPCSITICN VECTCR IPL
C
ok 3 ek v ok o ik ek Ak AR ok ok Ak ok e e ke de s e gl ok e o ek ok Ak R ook kR ek ok Ak Xk Xl e ofe ofe ek e e sk e ofe e o i ke e e ok
C
DIMENSION IPL{1)e IPZ{1D
C
C
Iy
DO 2 I = 1N
z {P2(1) = 1
DO & I = 1N
K = [IPLLID)
IF (K - 1) 30044
3 IF (K) T+s74b
4 IF (N = K) 19595
5 J = (P2{1)
IP2{1) = IP2(K)
[P2(K) = J
é CONTINUE
iER = O
RETURN
G
. ELROR RETURN = IPL iS5 NCT A TRANSPOSITICN VECTOR
C
7 IER = 1
RETURN -
END
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